【題目】如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQMN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達C處,測得∠BCP=30°,求這條河的寬.(結(jié)果保留根號)

【答案】米.

【解析】試題分析:根據(jù)矩形的性質(zhì),得到對邊相等,設這條河寬為x米,則根據(jù)特殊角的三角函數(shù)值,可以表示出EDBF,根據(jù)EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.

試題解析:作AEPQE,CFMNF.

PQMN,

∴四邊形AECF為矩形,

EC=AF,AE=CF.

設這條河寬為x米,

AE=CF=x.

RtAED中,

PQMN

∴在RtBCF中,

EC=ED+CDAF=AB+BF

解得

∴這條河的寬為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在正方形方格紙中,我們把頂點都在格點上的三角形稱為格點三角形,如圖,△ABC是一個格點三角形,點A的坐標為(﹣1,2).

(1)點B的坐標為   ,ABC的面積為   ;

(2)在所給的方格紙中,請你以原點O為位似中心,將△ABC放大為原來的2倍,放大后點A、B的對應點分別為A1、B1,點B1在第一象限;

(3)在(2)中,若P(a,b)為線段AC上的任一點,則放大后點P的對應點P1的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】東門天虹商場購進一批童樂牌玩具,每件成本價30元,每件玩具銷售單價x(元)與每天的銷售量y()的關(guān)系如下表:

若每天的銷售量y()是銷售單價x(元)的一次函數(shù)

1)求yx的函數(shù)關(guān)系式;

2)設東門天虹商場銷售童樂牌兒童玩具每天獲得的利潤為w(元),當銷售單價x為何值時,每天可獲得最大利潤?此時最大利潤是多少?

3)若東門天虹商場銷售童樂牌玩具每天獲得的利潤最多不超過15000元,最低不低于12000元,那么商場該如何確定童樂牌玩具的銷售單價的波動范圍?請你直接給出銷售單價x的范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在以點O為原點的平面直角坐標系中,邊長為1的正方形OABC的兩頂點AC分別在y軸,軸的正半軸上,現(xiàn)將正方形OABC繞點О順時針旋轉(zhuǎn),當點A第一次落在直線上時,停止轉(zhuǎn)動,旋轉(zhuǎn)過程中,AB邊交直線于點M,BC邊交軸于點N

1)旋轉(zhuǎn)停止時正方形旋轉(zhuǎn)的度數(shù)是_________.

2)在旋轉(zhuǎn)過程中,當MNAC平行時,

是否全等?此時正方形OABC旋轉(zhuǎn)的度數(shù)是多少?

②直接寫出的周長的值,并判斷這個值在正方形OABC的旋轉(zhuǎn)過程中是否發(fā)生變化.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠按用戶的月需求量()完成一種產(chǎn)品的生產(chǎn),其中.每件的售價為18萬元,每件的成本(萬元)是基礎價與浮動價的和,其中基礎價保持不變,浮動價與月需求量()成反比.經(jīng)市場調(diào)研發(fā)現(xiàn),月需求量與月份(為整數(shù),)符合關(guān)系式(為常數(shù)),且得到了表中的數(shù)據(jù).

月份()

1

2

成本(萬元/件)

11

12

需求量(件/月)

120

100

(1)滿足的關(guān)系式,請說明一件產(chǎn)品的利潤能否是12萬元;

(2),并推斷是否存在某個月既無盈利也不虧損;

(3)在這一年12個月中,若第個月和第個月的利潤相差最大,求

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:

20

21

19

16

27

18

31

29

21

22

25

20

19

22

35

33

19

17

18

29

18

35

22

15

18

18

31

31

19

22

整理上面數(shù)據(jù),得到條形統(tǒng)計圖:

樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:

統(tǒng)計量

平均數(shù)

眾數(shù)

中位數(shù)

數(shù)值

23

m

21

根據(jù)以上信息,解答下列問題:

(1)上表中眾數(shù)m的值為   ;

(2)為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應根據(jù)   來確定獎勵標準比較合適.(填平均數(shù)”、“眾數(shù)中位數(shù)”)

(3)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC 有一外接圓,其中∠B=90°,AB>BC,今欲在上找一點 P, 使得,下是甲、乙兩人的作法:

甲:①取 AB 的中點 D:②過點 D 作直線 AC 的平行線,交于點 P,則點 P 即為所求,

乙:①取 AC 的中點 E;②過點 E 作直線AB 的平行線,交于點 P,則點 P 即為所求,

對于甲、乙兩人的作法,下列判斷正確的是(

A. 兩人皆正確 B. 兩人皆錯誤 C. 甲正確,乙錯誤 D. 甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,兩個含有30°角的完全相同的三角板ABCDEF沿直線l滑動,下列說法錯誤的是(  )

A. 四邊形ACDF是平行四邊形 B. 當點EBC中點時,四邊形ACDF是矩形

C. 當點B與點E重合時,四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解決下列兩個問題:

1)如圖1,在ABC中,AB3AC4,BC5EF垂直且平分BC.點P在直線EF上,直接寫出PA+PB的最小值,并在圖中標出當PA+PB取最小值時點P的位置;

解:PA+PB的最小值為   

2)如圖2.點M、N在∠BAC的內(nèi)部,請在∠BAC的內(nèi)部求作一點P,使得點P到∠BAC兩邊的距離相等,且使PMPN.(尺規(guī)作圖,保留作圖痕跡,無需證明)

查看答案和解析>>

同步練習冊答案