【題目】如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點(diǎn)P是直線EF、GH之間任意一點(diǎn),連接PE、PF、PG、PH,則圖中陰影面積(△PEF和△PGH的面積和)等于( 。
A. 7 B. 8 C. 12 D. 14
【答案】A
【解析】連接EG,FH,
∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,
∴AE=ABBE=41=3,
CH=CDDH=41=3,
∴AE=CH,
在△AEF與△CGH中,
,
∴△AEF≌△CGH(SAS),
∴EF=GH,
同理可得,△BGE≌△DFH,
∴EG=FH,
∴四邊形EGHF是平行四邊形,
∵△PEF和△PGH的高的和等于點(diǎn)H到直線EF的距離,
∴△PEF和△PGH的面積和=×平行四邊形EGHF的面積,
平行四邊形EGHF的面積=4×6×2×3×1×(62) ×2×3×1×(62) =243232,=14,
∴△PEF和△PGH的面積和=×14=7.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x-6與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)E從B點(diǎn),出發(fā)以每秒1個單位的速度沿線段BO向O點(diǎn)移動(與B、O點(diǎn)不重合),過E作EF//AB,交x軸于F.將四邊形ABEF沿EF折疊,得到四邊形DCEF,設(shè)點(diǎn)E的運(yùn)動時間為t秒.
(1)①直線y=x-6與坐標(biāo)軸交點(diǎn)坐標(biāo)是A(_____,______),B(______,_____);
②畫出t=2時,四邊形ABEF沿EF折疊后的圖形(不寫畫法);
(2)若CD交y軸于H點(diǎn),求證:四邊形DHEF為平行四邊形;并求t為何值時,四邊形DHEF為菱形(計(jì)算結(jié)果不需化簡);
(3)連接AD,BC四邊形ABCD是什么圖形,并求t為何值時,四邊形ABCD的面積為36?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P、Q分別是正方形ABCD的邊AB、BC上的點(diǎn),且BP=BQ,過點(diǎn)B作PC的垂線,垂足為點(diǎn)H,連接HD、HQ. (14分)
(1)圖中有________對相似三角形;
(2)若正方形ABCD的邊長為1,P為AB的三等分點(diǎn),求△BHQ的面積;
(3)求證:DH⊥HQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(π﹣3)0﹣()﹣2+(﹣1)2n
(2)(m2)n(mn)3÷mn﹣2
(3)x(x2﹣x﹣1)
(4)(﹣3a)2a4+(﹣2a2)3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(a,0),B(b,0),其中a,b滿足|a+1|+(b﹣3)2=0.
(1)填空:a= ,b= ;
(2)如果在第三象限內(nèi)有一點(diǎn)M(﹣2,m),請用含m的式子表示△ABM的面積;
(3)在(2)條件下,當(dāng)m=時,在y軸上有一點(diǎn)P,使得△BMP的面積與△ABM的面積相等,請求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)兩種設(shè)備,已知每臺種設(shè)備的成本是種設(shè)備的1.5倍,公司若投入6萬元生產(chǎn)種設(shè)備,投人15萬元生產(chǎn)種設(shè)備,則可生產(chǎn)兩種設(shè)備共40臺.請解答下列問題:
(1)兩種設(shè)備每臺的成本分別是多少萬元?
(2)若兩種設(shè)備每臺的售價(jià)分別是5000元、9000元,公司決定生產(chǎn)兩種設(shè)備共50臺,且其中種設(shè)備至少生產(chǎn)10臺,計(jì)劃銷售后獲利不低于12萬元,請問采用哪種生產(chǎn)方案公司所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.
(1)求證:△ADC≌△CEB;
(2)從三角板的刻度可知AC=25cm,請你幫小明求出砌墻磚塊的厚度a的大。繅K磚的厚度相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知分別是的內(nèi)角平分線,過點(diǎn)作;垂足分別為連結(jié)若則的長等于_______(用含的代數(shù)式表示結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問題遷移:如圖2,AB∥CD,點(diǎn)P在射線OM上運(yùn)動,記∠PAB=α,∠PCD=β,當(dāng)點(diǎn)P在B、D兩點(diǎn)之間運(yùn)動時,問∠APC與α、β之間有何數(shù)量關(guān)系?請說明理由;
(3)在(2)的條件下,如果點(diǎn)P在B、D兩點(diǎn)外側(cè)運(yùn)動時(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請直接寫出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com