科目: 來源: 題型:
【題目】小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請(qǐng)你幫他完成如下問題:
(1)他認(rèn)為該定理有逆定理:“如果一個(gè)三角形某條邊上的中線等于該邊長(zhǎng)的一半,那么這個(gè)三角形是直角三角形”應(yīng)該成立.即如圖①,在中,是邊上的中線,若,求證:.
(2)如圖②,已知矩形,如果在矩形外存在一點(diǎn),使得,求證:.(可以直接用第(1)問的結(jié)論)
(3)在第(2)問的條件下,如果恰好是等邊三角形,請(qǐng)求出此時(shí)矩形的兩條鄰邊與的數(shù)量關(guān)系.
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線y=x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)如圖1,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說明理由.
(3)如圖2,將拋物線平移,使其頂點(diǎn)E與原點(diǎn)O重合,直線y=kx+2(k>0)與拋物線相交于點(diǎn)P、Q(點(diǎn)P在左邊),過點(diǎn)P作x軸平行線交拋物線于點(diǎn)H,當(dāng)k發(fā)生改變時(shí),請(qǐng)說明直線QH過定點(diǎn),并求定點(diǎn)坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,菱形ABCD中,∠BAD=60°,點(diǎn)E在邊AD上,連接BE,在BE上取點(diǎn)F,連接AF并延長(zhǎng)交BD于H,且∠AFE=60°,過C作CG∥BD,直線CG、AF交于G.
(1)求證:∠FAE=∠EBA;
(2)求證:AH=BE;
(3)若AE=3,BH=5,求線段FG的長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測(cè)區(qū),其中點(diǎn)C、D為監(jiān)測(cè)點(diǎn),已知點(diǎn)C、D、B在同一直線上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°
(1)求道路AB段的長(zhǎng)(結(jié)果精確到1米)
(2)如果道路AB的限速為60千米/時(shí),一輛汽車通過AB段的時(shí)間為90秒,請(qǐng)你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是CD的中點(diǎn),將△BCE沿BE折疊后得到△BEF、且點(diǎn)F在矩形ABCD的內(nèi)部,將BF延長(zhǎng)交AD于點(diǎn)G.若,則=__.
查看答案和解析>>
科目: 來源: 題型:
【題目】(Ⅰ)如圖1,在菱形中,已知,,拋物線()經(jīng)過,,三點(diǎn).
(1)點(diǎn)的坐標(biāo)為__________,點(diǎn)的坐標(biāo)為__________;
(2)求拋物線的解析式.
(Ⅱ)如圖2,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),直線垂直于點(diǎn),點(diǎn)在直線上.
(3)當(dāng)的值最小時(shí),則點(diǎn)的坐標(biāo)為____________;
(4)在(3)的條件下,連接、、得,問在拋物線上是否存在點(diǎn),使得以,,為頂點(diǎn)的三角形與相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)是線段上一點(diǎn),,以點(diǎn)為圓心,的長(zhǎng)為半徑作⊙,過點(diǎn)作的垂線交⊙于,兩點(diǎn),點(diǎn)在線段的延長(zhǎng)線上,連接交⊙于點(diǎn),以,為邊作.
(1)求證:是⊙的切線;
(2)若,求四邊形與⊙重疊部分的面積;
(3)若,,連接,求和的長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC和BD交于點(diǎn)O,分別過點(diǎn)B、C作BE∥AC,CE∥BD,BE與CE交于點(diǎn)E.
(1)求證:四邊形OBEC是矩形;
(2)當(dāng)∠ABD=60°,AD=2時(shí),求∠EDB的正切值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了節(jié)能減排,我市某校準(zhǔn)備購買某種品牌的節(jié)能燈,已知3只A型節(jié)能燈和5只B型節(jié)能燈共需50元,2只A型節(jié)能燈和3只B型節(jié)能燈共需31元.
(1)求1只A型節(jié)能燈和1只B型節(jié)能燈的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購買這兩種型號(hào)的節(jié)能燈共200只,要求A型節(jié)能燈的數(shù)量不超過B型節(jié)能燈的數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com