科目: 來源: 題型:
【題目】在一次數(shù)學(xué)研究性學(xué)習(xí)中,小兵將兩個全等的直角三角形紙片ABC和DEF拼在一起,使點(diǎn)A與點(diǎn)F重合,點(diǎn)C與點(diǎn)D重合(如圖1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并進(jìn)行如下研究活動.
活動一:將圖1中的紙片DEF沿AC方向平移,連結(jié)AE,BD(如圖2),當(dāng)點(diǎn)F與點(diǎn)C重合時停止平移.
(思考)圖2中的四邊形ABDE是平行四邊形嗎?請說明理由.
(發(fā)現(xiàn))當(dāng)紙片DEF平移到某一位置時,小兵發(fā)現(xiàn)四邊形ABDE為矩形(如圖3).求AF的長.
活動二:在圖3中,取AD的中點(diǎn)O,再將紙片DEF繞點(diǎn)O順時針方向旋轉(zhuǎn)α度(0≤α≤90),連結(jié)OB,OE(如圖4).
(探究)當(dāng)EF平分∠AEO時,探究OF與BD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了測量一條兩岸平行的河流寬度,三個數(shù)學(xué)研究小組設(shè)計(jì)了不同的方案,他們在河南岸的點(diǎn)A處測得河北岸的樹H恰好在A的正北方向.測量方案與數(shù)據(jù)如下表:
(1)哪個小組的數(shù)據(jù)無法計(jì)算出河寬?
(2)請選擇其中一個方案及其數(shù)據(jù)求出河寬(精確到0.1m).
(參考數(shù)據(jù):)
查看答案和解析>>
科目: 來源: 題型:
【題目】小吳家準(zhǔn)備購買一臺電視機(jī),小吳將收集到的某地區(qū)A、B、C三種品牌電視機(jī)銷售情況的有關(guān)數(shù)據(jù)統(tǒng)計(jì)如下:
根據(jù)上述三個統(tǒng)計(jì)圖,請解答:
(1)2014~2019年三種品牌電視機(jī)銷售總量最多的是 品牌,月平均銷售量最穩(wěn)定的是 品牌.
(2)2019年其他品牌的電視機(jī)年銷售總量是多少萬臺?
(3)貨比三家后,你建議小吳家購買哪種品牌的電視機(jī)?說說你的理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】經(jīng)過實(shí)驗(yàn)獲得兩個變量x(x>0),y(y>0)的一組對應(yīng)值如下表.
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 6 | 2.9 | 2 | 1.5 | 1.2 | 1 |
(1)請畫出相應(yīng)函數(shù)的圖象,并求出函數(shù)表達(dá)式.
(2)點(diǎn)A(x1,y1),B(x2,y2)在此函數(shù)圖象上.若x1<x2,則y1,y2有怎樣的大小關(guān)系?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一張矩形紙條ABCD,AB=5cm,BC=2cm,點(diǎn)M,N分別在邊AB,CD上,CN=1cm.現(xiàn)將四邊形BCNM沿MN折疊,使點(diǎn)B,C分別落在點(diǎn)B',C'上.當(dāng)點(diǎn)B'恰好落在邊CD上時,線段BM的長為_____cm;在點(diǎn)M從點(diǎn)A運(yùn)動到點(diǎn)B的過程中,若邊MB'與邊CD交于點(diǎn)E,則點(diǎn)E相應(yīng)運(yùn)動的路徑長為_____cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=x2,當(dāng)a≤x≤b時m≤y≤n,則下列說法正確的是( 。
A.當(dāng)n﹣m=1時,b﹣a有最小值
B.當(dāng)n﹣m=1時,b﹣a有最大值
C.當(dāng)b﹣a=1時,n﹣m無最小值
D.當(dāng)b﹣a=1時,n﹣m有最大值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=2,BC=8,按下列步驟作圖:
①以點(diǎn)A為圓心,適當(dāng)?shù)拈L度為半徑作弧,分別交AB,AC于點(diǎn)E,F,再分別以點(diǎn)E,F為圓心,大于EF的長為半徑作弧相交于點(diǎn)H,作射線AH;
②分別以點(diǎn)A,B為圓心,大于AB的長為半徑作弧相交于點(diǎn)M,N,作直線MN,交射線AH于點(diǎn)O;
③以點(diǎn)O為圓心,線段OA長為半徑作圓.
則⊙O的半徑為( 。
A.2B.10C.4D.5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為A(1,4),與坐標(biāo)軸交于B、C、D三點(diǎn),且B點(diǎn)的坐標(biāo)為(﹣1,0).
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點(diǎn)M、N,且點(diǎn)N在點(diǎn)M的左側(cè),過M、N作x軸的垂線交x軸于點(diǎn)G、H兩點(diǎn),當(dāng)四邊形MNHG為矩形時,求該矩形周長的最大值;
(3)當(dāng)矩形MNHG的周長最大時,能否在二次函數(shù)圖象上找到一點(diǎn)P,使△PNC的面積是矩形MNHG面積的?若存在,求出該點(diǎn)的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】小波在復(fù)習(xí)時,遇到一個課本上的問題,溫故后進(jìn)行了操作、推理與拓展.
(1)溫故:如圖1,在△ABC中,AD⊥BC于點(diǎn)D,正方形PQMN的邊QM在BC上,頂點(diǎn)P,N分別在AB, AC上,若BC=6,AD=4,求正方形PQMN的邊長.
(2)操作:能畫出這類正方形嗎?小波按數(shù)學(xué)家波利亞在《怎樣解題》中的方法進(jìn)行操作:如圖2,任意畫△ABC,在AB上任取一點(diǎn)P′,畫正方形P′Q′M′N′,使Q′,M′在BC邊上,N′在△ABC內(nèi),連結(jié)B N′并延長交AC于點(diǎn)N,畫NM⊥BC于點(diǎn)M,NP⊥NM交AB于點(diǎn)P,PQ⊥BC于點(diǎn)Q,得到四邊形PQMN.小波把線段BN稱為“波利亞線”.
(3)推理:證明圖2中的四邊形PQMN 是正方形.
(4)拓展:在(2)的條件下,于波利業(yè)線B N上截取NE=NM,連結(jié)EQ,EM(如圖3).當(dāng)tan∠NBM=時,猜想∠QEM的度數(shù),并嘗試證明.
請幫助小波解決“溫故”、“推理”、“拓展”中的問題.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀理解題.
定義:如果四邊形的某條對角線平分一組對角,那么把這條對角線叫做“美妙線”,該四邊形叫做“美妙四邊形”.
如圖,在四邊形ABDC中,對角線BC平分∠ACD和∠ABD,那么對角線BC叫“美妙線”,四邊形ABDC就稱為“美妙四邊形”.
問題:
(1)下列四邊形:平行四邊形、矩形、菱形、正方形,其中是“美妙四邊形”的有 個;
(2)四邊形ABCD是“美妙四邊形”,AB=∠BAD=60°,∠ABC=90°,求四邊形ABCD的面積.(畫出圖形并寫出解答過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com