9.某班級(jí)有50名同學(xué),一次數(shù)學(xué)測(cè)試平均成績(jī)是92,如果學(xué)號(hào)為1號(hào)到30號(hào)的同學(xué)平均成績(jī)?yōu)?0,則學(xué)號(hào)為31號(hào)到50號(hào)同學(xué)的平均成績(jī)?yōu)?5.

分析 設(shè)學(xué)號(hào)為31號(hào)到50號(hào)同學(xué)的平均成績(jī)?yōu)閤,得到關(guān)于x的方程,解出即可.

解答 解:設(shè)學(xué)號(hào)為31號(hào)到50號(hào)同學(xué)的平均成績(jī)?yōu)閤,
則92×50=90×30+20x,解得:x=95,
故答案為:95.

點(diǎn)評(píng) 本題考查了平均數(shù)問(wèn)題,掌握平均數(shù)的定義是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.連續(xù)兩次拋擲一枚骰子,記錄向上的點(diǎn)數(shù),則向上的點(diǎn)數(shù)之差的絕對(duì)值為2的概率是( 。
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{4}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知正數(shù)x,y滿足$x+4y+\frac{1}{x}+\frac{1}{y}=10$,則$\frac{1}{x}+\frac{1}{y}$的取值范圍是[1,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.使tanx≥1成立的x的集合為{x|$\frac{π}{4}$+kπ≤x<$\frac{π}{2}$+kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若關(guān)于x的方程2sin(2x+$\frac{π}{6}$)=m在[0,$\frac{π}{2}$]上有兩個(gè)不等實(shí)根,則m的取值范圍是( 。
A.(1,$\sqrt{3}$)B.[0,2]C.[1,2)D.[1,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓Q:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),F(xiàn)1,F(xiàn)2分別是其左、右焦點(diǎn),以線段F1F2為直徑的圓與橢圓Q有且僅有兩個(gè)交點(diǎn).
(1)求橢圓Q的方程;
(2)設(shè)過(guò)點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)P,點(diǎn)P橫坐標(biāo)的取值范圍是[-$\frac{1}{4}$,0),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.等比數(shù)列{an}中各項(xiàng)均為正數(shù),Sn是其前n項(xiàng)和,且滿足2S3=8a1+3a2,a4=16,則S4=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},0≤x<1}\\{lnx+e,1≤x≤e}\end{array}\right.$在區(qū)間[0,e]上隨機(jī)取一個(gè)實(shí)數(shù)x,則f(x)的值不小于常數(shù)e的概率是(  )
A.$\frac{1}{e}$B.1-$\frac{1}{e}$C.$\frac{e}{1+e}$D.$\frac{1}{1+e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象如圖所示,其中A(-$\frac{5π}{12}$,0),B($\frac{π}{12}$,0),則函數(shù)f(x)的單調(diào)增區(qū)間為( 。
A.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)B.[$\frac{π}{3}$+kπ,$\frac{5π}{6}$+kπ](k∈Z)
C.[-$\frac{π}{6}$+2kπ,$\frac{π}{3}$+2kπ](k∈Z)D.[$\frac{π}{3}$+2kπ,$\frac{5π}{6}$+2kπ](k∈Z)

查看答案和解析>>

同步練習(xí)冊(cè)答案