4.若關(guān)于x的方程2sin(2x+$\frac{π}{6}$)=m在[0,$\frac{π}{2}$]上有兩個(gè)不等實(shí)根,則m的取值范圍是( 。
A.(1,$\sqrt{3}$)B.[0,2]C.[1,2)D.[1,$\sqrt{3}$]

分析 把方程2sin(2x+$\frac{π}{6}$)=m化為sin(2x+$\frac{π}{6}$)=$\frac{m}{2}$,畫出函數(shù)f(x)=sin(2x+$\frac{π}{6}$)在x∈[0,$\frac{π}{2}$]上的圖象,結(jié)合圖象求出方程有兩個(gè)不等實(shí)根時(shí)m的取值范圍.

解答 解:方程2sin(2x+$\frac{π}{6}$)=m可化為
sin(2x+$\frac{π}{6}$)=$\frac{m}{2}$,
當(dāng)x∈[0,$\frac{π}{2}$]時(shí),2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
畫出函數(shù)y=f(x)=sin(2x+$\frac{π}{6}$)在x∈[0,$\frac{π}{2}$]上的圖象如圖所示;

根據(jù)方程2sin(2x+$\frac{π}{6}$)=m在[0,$\frac{π}{2}$]上有兩個(gè)不等實(shí)根,
得$\frac{1}{2}$≤$\frac{m}{2}$<1
1≤m<2
∴m的取值范圍是[1,2).
故選:C.

點(diǎn)評(píng) 本題主要考查方程根的存在性以及個(gè)數(shù)判斷以及正弦函數(shù)的圖象應(yīng)用問題,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級(jí),0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~250為重度污染;>300為嚴(yán)重污染.一環(huán)保人士記錄2017年某地某月10天的AQI的莖葉圖如下.
(1)利用該樣本估計(jì)該地本月空氣質(zhì)量優(yōu)良(AQI≤100)的天數(shù);(按這個(gè)月總共30天計(jì)算)
(2)若從樣本中的空氣質(zhì)量不佳(AQI>100)的這些天,隨機(jī)地抽取兩天深入分析各種污染指標(biāo),求這該兩天的空氣質(zhì)量等級(jí)恰好不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}為等差數(shù)列,且滿足a1+a5=90.若(1-x)m展開式中x2項(xiàng)的系數(shù)等于數(shù)列{an}的第三項(xiàng),則m的值為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1的左、右焦點(diǎn)分別為F1、F2,直線l經(jīng)過F1橢圓于A,B兩點(diǎn),則△ABF2的周長為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=sin(ωx)(ω>0)的圖象關(guān)于點(diǎn)($\frac{2π}{3}$,0)對(duì)稱,且在區(qū)間(0,$\frac{π}{14}$)上單調(diào)遞增,則ω的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某班級(jí)有50名同學(xué),一次數(shù)學(xué)測(cè)試平均成績是92,如果學(xué)號(hào)為1號(hào)到30號(hào)的同學(xué)平均成績?yōu)?0,則學(xué)號(hào)為31號(hào)到50號(hào)同學(xué)的平均成績?yōu)?5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|x2-2x-3<0},B={x|-2<x<2},則A∩B=( 。
A.{x|-2<x<2}B.{x|-2<x<3}C.{x|-1<x<3}D.{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+2≥0}&{\;}\\{2x+y-6≤0}&{\;}\\{0≤y≤3}&{\;}\end{array}\right.$,且z=mx-y(m<2)的最小值為-$\frac{5}{2}$,則m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)M是圓心為E的圓(x+$\sqrt{3}$)2+y2=16上的動(dòng)點(diǎn),點(diǎn)F($\sqrt{3}$,0),線段MF的垂直平分線交EM于點(diǎn)P.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過原點(diǎn)O作直線l交(Ⅰ)中的軌跡C于點(diǎn)A,B,點(diǎn)D滿足$\overrightarrow{FD}$=$\overrightarrow{FA}$+$\overrightarrow{FB}$,試求四邊形AFBD的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案