【題目】某農(nóng)場規(guī)劃將果樹種在正方形的場地內(nèi).為了保護(hù)果樹不被風(fēng)吹,決定在果樹的周圍種松樹. 在下圖里,你可以看到規(guī)劃種植果樹的列數(shù)(n),果樹數(shù)量及松樹數(shù)量的規(guī)律:

1)按此規(guī)律,n = 5時果樹數(shù)量及松樹數(shù)量分別為多少;并寫出果樹數(shù)量,及松樹數(shù)量關(guān)于n的表達(dá)式

2)定義: 增加的速度;現(xiàn)農(nóng)場想擴(kuò)大種植面積,問:哪種樹增加的速度會更快?并說明理由

【答案】1,2)見解析

【解析】

由題意知,時,果樹1棵,松樹棵,時,果樹4棵,松樹棵,從而類比可得時,果樹25棵,松樹棵,從而可得

化簡,從而判斷.

1n = 5時果樹25棵,松樹40

2

當(dāng)時,2n+1 < 8 松樹增加的速度快

當(dāng)時,2n+1 > 8 果樹增加的速度快

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求直線l的普通方程以及曲線C的參數(shù)方程;

2)過曲線C上任意一點E作與直線l的夾角為的直線,交l于點F,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點,的坐標(biāo)分別為,,直線相交于點,且的斜率之差是1.

1)求點的軌跡的方程;

2)過軌跡上的點,作圓的兩條切線,分別交軸于點.當(dāng)的面積最小時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)與雙曲線,)有相同的焦點,點是兩條曲線的一個交點,且軸,則該雙曲線經(jīng)過一、三象限的漸近線的傾斜角所在的區(qū)間是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張,為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少05萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.

1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個數(shù)列的通項公式;

2)從2013年算起,累計各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?











查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為參數(shù)).直線的參數(shù)方程為參數(shù)).

)求曲線在直角坐標(biāo)系中的普通方程;

)以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線截直線所得線段的中點極坐標(biāo)為時,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,平面的中點.

)若的中點,求證:平面平面;

)若,求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求證上是單調(diào)遞減函數(shù);

2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

3)討論函數(shù)的零點個數(shù).

查看答案和解析>>

同步練習(xí)冊答案