9.已知角θ的終邊經(jīng)過點P(x,3)(x>0)且$cosθ=\frac{{\sqrt{10}}}{10}$,則x等于( 。
A.-1B.1C.-9D.9

分析 由條件利用任意角的三角函數(shù)的定義,求出x的值.

解答 解:由題意可得,cosθ=$\frac{x}{\sqrt{{x}^{2}+9}}=\frac{\sqrt{10}}{10}$,∴x=1,
故選B.

點評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知經(jīng)過點P(3,m)和點Q(m,-2)的直線的斜率等于2,則m的值為(  )
A.$\frac{4}{3}$B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x≥y\\ 2x-y≤1\end{array}\right.$若目標函數(shù)為z=2x+4y,則z的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知云臺山景區(qū)對擁擠等級與每日游客數(shù)量(單位:百人)的關(guān)系有如下規(guī)定:當n∈[0,100)時,擁擠等級為“優(yōu)”;當n∈[100,200)時,擁擠等級為“良”;當n∈[200,300)時,擁擠等級為“擁擠”;當n≥300時,擁擠等級為“嚴重擁擠”.該景區(qū)對9月份的游客數(shù)量作出如圖的統(tǒng)計數(shù)據(jù).
(1)下面是根據(jù)統(tǒng)計數(shù)據(jù)得到的頻率分布直方表,求出a,b,c的值,并估計該景區(qū)9月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
游客數(shù)量
(單位:百人)
[0,100)[100,200)[200,300)[300,400)
天數(shù)a104c
頻率b$\frac{1}{3}$$\frac{2}{15}$$\frac{1}{30}$
(2)某人選擇在9月1日至9月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為“優(yōu)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=ax+bsinx+1,若f(2017)=7,則f(-2017)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.各項為整數(shù)的數(shù)列{an}的前n項和為Sn,且滿足Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N+).
(1)求an;
(2)設(shè)數(shù)列{an+bn}的首項為1,公比為q的等比數(shù)列,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.網(wǎng)上購物逐步走進大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過投擲一枚質(zhì)地均勻的骰子決定去哪家購物,擲出點數(shù)5或6的人去淘寶購物,擲處點數(shù)小于5的去京東商場購物,且參加者必須從淘寶和京東商城選擇一家購物.
(1)求這4人中恰有1人去淘寶購物的概率;
(2)用ξ,η分別表示這4人中取淘寶和京東商城購物的人數(shù),記X=ξη,求隨機變量X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)已知M={2,(m2-2m)+(m2+m-2)i},P={-1,2,4i},若M∪P=P,求實數(shù)m的值.
(2)已知方程x2+4x+a=0(a∈R)的一個根為x1=-2+i,求a的值和方程的另一個根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.為了調(diào)查某高中學(xué)生每天的睡眠時間,現(xiàn)隨機對20名男生和20名女生進行問卷調(diào)查,結(jié)果如下:
睡眠時間(小時)[4,5)[5,6)[6,7)[7,8)[8,9]
女生人數(shù)24842
男生人數(shù)15653
(1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表;
(2)是否有90%的把握認為“睡眠時間與性別有關(guān)”?
睡眠時間少于7小時睡眠時間不少于7小時合計
男生12820
女生14620
合計261440
附臨界參考表
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

同步練習冊答案