分析 (Ⅰ)折疊前有AD⊥AE,CD⊥CF,折疊后有A1D⊥A1E,A1D⊥A1F,從而A1D⊥平面A1EF,由此能證明A1D⊥EF.
(Ⅱ)取EF的中點O,連接A1O,三棱錐A1-DEF的體積${V_{{A_1}-EFD}}=\frac{1}{3}•{S_{△E{A_1}F}}•{A_1}D$,由此能求出結果.
解答 解::(Ⅰ)折疊前有AD⊥AE,CD⊥CF,
折疊后有A1D⊥A1E,A1D⊥A1F,
又A1E∩A1F=A1,∴A1D⊥平面A1EF,
∴A1D⊥EF.…(6分)
解:(Ⅱ)由正方形ABCD的邊長為2,
折疊后A1D=2,${A_1}E={A_1}F=\frac{3}{2}$,$EF=\frac{{\sqrt{2}}}{2}$,
取EF的中點O,連接A1O,
則${A_1}O=\sqrt{{A_1}{E^2}-E{O^2}}=\frac{{\sqrt{34}}}{4}$
∴${S_{△E{A_1}F}}=\frac{1}{2}•{A_1}O•EF=\frac{{\sqrt{17}}}{8}$,
∴${V_{{A_1}-EFD}}=\frac{1}{3}•{S_{△E{A_1}F}}•{A_1}D=\frac{{\sqrt{17}}}{12}$.…(12分)
點評 本題考查柱、錐、臺體的體積,解答此題的關鍵是注意折疊問題在折疊前后的變量與不變量,考查空間想象能力與計算能力,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲 | 乙 | ||||||||||||
8 | 9 | 9 | 8 | 9 | 9 | 3 | 8 | 9 | 9 | ||||
2 | 0 | 1 | 0 | 4 | 2 | 1 | 1 | 1 | 0 | 1 | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com