A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 根據(jù)題意,得出$\overrightarrow{a}$•$\overrightarrow$=0,$\overrightarrow{a}$⊥$\overrightarrow$;求出|$\overrightarrow$|=$\sqrt{3}$,利用平面向量數(shù)量積的夾角公式求出夾角的大。
解答 解:非零向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|=2,|{\overrightarrow a}|=1$,
∴${(\overrightarrow{a}+\overrightarrow)}^{2}$=${(\overrightarrow{a}-\overrightarrow)}^{2}$,
∴$\overrightarrow{a}$•$\overrightarrow$=0,
∴$\overrightarrow{a}$⊥$\overrightarrow$;
畫出圖形如圖所示;
∴|$\overrightarrow$|=$\sqrt{3}$,
∴($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=${\overrightarrow{a}}^{2}$-${\overrightarrow}^{2}$=12-${(\sqrt{3})}^{2}$=-2,
∴cos<$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{a}$-$\overrightarrow$>=$\frac{(\overrightarrow{a}+\overrightarrow)•(\overrightarrow{a}-\overrightarrow)}{|\overrightarrow{a}+\overrightarrow|×|\overrightarrow{a}-\overrightarrow|}$=$\frac{-2}{2×2}$=-$\frac{1}{2}$,
∵$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$夾角的取值范圍為[0,π],
∴$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角為$\frac{2π}{3}$.
故選:C.
點(diǎn)評 本題考查了平面向量的數(shù)量積與夾角公式的應(yīng)用問題,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x<0} | B. | {x|-1<x<0} | C. | {-2,0} | D. | {x|1<x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 27 | C. | 30 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com