16.在60°角的二面角的棱上有兩個(gè)點(diǎn)A、B,AC、BD分別是在這個(gè)二面角的兩個(gè)面內(nèi),且都垂直于AB,若AB=5,AC=3,BD=8,則CD=$\sqrt{74}$.

分析 由已知可得$\overrightarrow{CD}=\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,利用數(shù)量積的性質(zhì)即可得出.

解答 解:∵CA⊥AB,BD⊥AB,∴$\overrightarrow{CA}•\overrightarrow{AB}=0,\overrightarrow{BD}•\overrightarrow{AB}=0$
又∵$<\overrightarrow{CA},\overrightarrow{BD}>=12{0}^{0}$,$\overrightarrow{CD}=\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,
∴${\overrightarrow{CD}}^{2}=(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD})^{2}$=${\overrightarrow{CA}}^{2}+{\overrightarrow{AB}}^{2}+{\overrightarrow{BD}}^{2}+2\overrightarrow{CA}•\overrightarrow{AB}+2\overrightarrow{CA}•$$\overrightarrow{BD}$+2$\overrightarrow{AB}•\overrightarrow{BD}$
=32+52+82+0+2×3×8×cos120°+0=74.
∴$CD=\sqrt{74}$,故答案為:$\sqrt{74}$

點(diǎn)評(píng) 本題考查了空間向量的運(yùn)算和數(shù)量積運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某三棱錐的三視圖如圖所示,該三棱錐體積為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足2$\overrightarrow{a}$+$\overrightarrow$=(0,-5,10),$\overrightarrow{c}$=(1,-2,-2),且$\overrightarrow$•$\overrightarrow{c}$=-18,則$\overrightarrow{a}$•$\overrightarrow{c}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2-2ax+1(a∈R).
(1)當(dāng)a=2時(shí),求f(x)在x∈[1,4]上的最值;
(2)當(dāng)x∈[1,4]時(shí),不等式f(x)≥x-3恒成立,求a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.直線l;y=k(x+2)與圓O:x2+y2=4相交于A、B兩點(diǎn),則“k=1”是“S△OAB=2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)和拋物線y2=4$\sqrt{3}$x的焦點(diǎn)相同,且橢圓過(guò)點(diǎn)(-$\sqrt{3}$,$\frac{1}{2}$).
(1)求橢圓方程;
(2)過(guò)點(diǎn)(3,0)的直線交橢圓于A、B兩點(diǎn),P為橢圓上一點(diǎn),且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OP}$(λ≠0,O為原點(diǎn)),當(dāng)|AB|<$\sqrt{3}$時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知實(shí)數(shù)a,b滿足($\frac{1}{2}$)a<($\frac{1}{2}$)b,則(  )
A.a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$B.log2a>log2bC.$\frac{1}{a}$<$\frac{1}$D.sina>sinb

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某市A,B,C,D,E,F(xiàn)六個(gè)城區(qū)欲架設(shè)光纜,如圖所示,兩點(diǎn)之間的線段及線段上的相應(yīng)數(shù)字分別表示對(duì)應(yīng)城區(qū)可以架設(shè)光纜及所需光纜的長(zhǎng)度,如果任意兩個(gè)城市之間均有光纜相通,則所需光纜的總長(zhǎng)度的最小值是(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列命題中的真命題是( 。
A.若a>|b|,則a2>b2B.若|a|>b,則a2>b2
C.若a≥b,則a2≥b2D.若a>b,c>d,則ac>bd

查看答案和解析>>

同步練習(xí)冊(cè)答案