14.已知等邊△ABC的高為3,點P和點M是平面ABC內(nèi)的動點,且|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|的最小值為$\frac{5}{2}$.

分析 畫出圖形,建立坐標(biāo)系,求出P的軌跡方程,M的軌跡方程,然后利用方程求解|$\overrightarrow{BM}$|的最小值.

解答 解:由等邊△ABC的高為3,可得△ABC為邊長為2$\sqrt{3}$的正三角形,
如圖建立平面坐標(biāo)系,A(0,3),B(-$\sqrt{3}$,0),C($\sqrt{3}$,0),
由|$\overrightarrow{AP}$|=1得點P的軌跡方程為x2+(y-3)2=1①,
設(shè)M(x0,y0),由$\overrightarrow{PM}$=$\overrightarrow{MC}$得P(2x0-$\sqrt{3}$,2y0),
代入①式得M的軌跡方程為(x-$\frac{\sqrt{3}}{2}$)2+(y-$\frac{3}{2}$)2=$\frac{1}{4}$,
記圓心為N($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),
則|$\overrightarrow{BM}$|的最小值為|BN|-$\frac{1}{2}$=$\sqrt{(\frac{\sqrt{3}}{2}+\sqrt{3})^{2}+(\frac{3}{2})^{2}}$-$\frac{1}{2}$
=3-$\frac{1}{2}$=$\frac{5}{2}$.
故答案為:$\frac{5}{2}$.

點評 本題考查軌跡方程的求法,曲線與方程的關(guān)系,幾何意義的應(yīng)用,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.拋物線x2=2py(p>0)的焦點為F,其準(zhǔn)線與雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1相交于A,B兩點,若△ABF為等邊三角形,則p的值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C1:x2+y2+6x=0關(guān)于直線l1:y=2x+1對稱的圓為C
(1)求圓C的方程;
(2)過點(-1,0)作直線與圓C交于A,B兩點,O是坐標(biāo)原點,是否存在這樣的直線,使得在平行四邊形OASB中|$\overrightarrow{OS}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,某開發(fā)區(qū)內(nèi)新建兩棟樓AB,CD(A,C為水平地面),已知樓AB的高度為10m,兩樓間的距離AC為70m.
(1)若在AC上距離樓AB30m的點P處測得兩樓的張角∠BPD=135°,求樓CD的高度;
(2)若樓CD的高度為20米,試在AC上確定一點P,使得張角∠BPD最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=log2x-2-x,g(x)=log${\;}_{\frac{1}{2}}$x-2x的零點分別為x1,x2,則下列結(jié)論正確的是(  )
A.0<x1x2<1B.x1x2=1C.1<x1x2<2D.x1x2≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)F1、F2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1的兩個焦點,已知點P在此雙曲線上,且∠F1PF2=$\frac{π}{3}$.若此雙曲線的離心率等于$\frac{\sqrt{6}}{2}$,則|PF1|+|PF2|=4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)O為坐標(biāo)原點,直線l:x-y+m=0與圓C:x2-2x+y2-7=0交于M,N兩點,與x軸,y軸交于A,B兩點,且$\sqrt{3}$|$\overrightarrow{MN}$|=3|$\overrightarrow{OM}$+$\overrightarrow{ON}$|,點P在直線l上,滿足$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,若$\overrightarrow{PO}$•$\overrightarrow{PC}$=3,則λ的值為4±$\sqrt{17}$或-3$±\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表:
 價格x(元/kg) 10 15 20 25 30
 日需求量y(kg) 11 10 8 6 5
(1)求y關(guān)于x的線性回歸方程
(2)利用(1)中的回歸方程,當(dāng)價格x=35元/kg時,日需求量y的預(yù)測值為多少?
參考公式:線性回歸方程$\widehat{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$$-b\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.1B.2C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案