5.拋物線x2=2py(p>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1相交于A,B兩點(diǎn),若△ABF為等邊三角形,則p的值為( 。
A.2B.4C.6D.8

分析 求出拋物線的焦點(diǎn)坐標(biāo),準(zhǔn)線方程,然后求出拋物線的準(zhǔn)線與雙曲線的交點(diǎn)坐標(biāo),利用三角形是等邊三角形得到p的方程,求出p即可.

解答 解:拋物線的焦點(diǎn)坐標(biāo)為(0,$\frac{p}{2}$),
準(zhǔn)線方程為:y=-$\frac{p}{2}$,
準(zhǔn)線方程與雙曲線聯(lián)立可得:$\frac{{x}^{2}}{3}$-$\frac{{p}^{2}}{12}$=1,
解得x=±$\sqrt{3+\frac{{p}^{2}}{4}}$,
因?yàn)椤鰽BF為等邊三角形,
所以$\frac{\sqrt{3}}{2}$|AB|=p,
即有$\frac{\sqrt{3}}{2}$•2$\sqrt{3+\frac{{p}^{2}}{4}}$=p,
解得p=6.
故選:C.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì),雙曲線方程的應(yīng)用,考查分析問題解決問題的能力以及計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.將y=2x的圖象關(guān)于直線y=x對(duì)稱后,再向右平行移動(dòng)一個(gè)單位所得圖象表示的函數(shù)的解析式是y=log2(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)A={x|x2+4x≤0},B={x|x2+2(a+1)x+a2-1<0},其中x∈R,如果A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}滿足an+1=an-an-1(n≥2),a1=2017,a2=2016,Sn為數(shù)列{an}的前n項(xiàng)和,則S2017的值為(  )
A.2017×2016B.2016C.2017D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“α=$\frac{π}{3}$“是“cosα=$\frac{1}{2}$“成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.洛書古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上有如圖所示圖案,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,洛書中蘊(yùn)含的規(guī)律奧妙無窮,比如:42+92+22=82+12+62.據(jù)此你能得到類似等式是42+32+82=22+72+62

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會(huì)議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計(jì),得到如下丟失數(shù)據(jù)的列聯(lián)表:(a,b,d,A,B,表示丟失的數(shù)據(jù))
 無意愿有意愿總計(jì)
ab40
5dA
總計(jì)25B80
(Ⅰ)求出a,b,d,A,B的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);
(Ⅱ)若表中無意愿做志愿者的5個(gè)女同學(xué)中,3個(gè)是大學(xué)三年級(jí)同學(xué),2個(gè)是大學(xué)四年級(jí)同學(xué).現(xiàn)從這5個(gè)同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個(gè)同學(xué)是同年級(jí)的概率.
附參考公式及數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.400.250.100.0100.0050.001
k00.7081.3232.7066.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.有一塊邊長(zhǎng)為8m的正方形鋼板,將其四個(gè)角各截去一個(gè)邊長(zhǎng)為xm的小正方形,然后焊接成一個(gè)無蓋的蓄水池.
(1)寫出以x為自變量的蓄水池容積V的函數(shù)解析式V(x),并求函數(shù)V(x)的定義域;
(2)蓄水池的底邊為多少時(shí),蓄水池的容積最大,并求出最大容積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知等邊△ABC的高為3,點(diǎn)P和點(diǎn)M是平面ABC內(nèi)的動(dòng)點(diǎn),且|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|的最小值為$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案