19.設(shè)F1、F2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1的兩個(gè)焦點(diǎn),已知點(diǎn)P在此雙曲線上,且∠F1PF2=$\frac{π}{3}$.若此雙曲線的離心率等于$\frac{\sqrt{6}}{2}$,則|PF1|+|PF2|=4$\sqrt{3}$.

分析 根據(jù)雙曲線的離心率,求出a的值,結(jié)合雙曲線的定義進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵雙曲線$\frac{x^2}{a^2}-\frac{y^2}{2}=1$的離心率等于$\frac{{\sqrt{6}}}{2}$,
∴e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+2}{{a}^{2}}=\frac{3}{2}$,∴a=2,c=$\sqrt{6}$.
設(shè)|PF1|=m,|PF2|=n,
則|m-n|=2a=4,
則由余弦定理可得24=m2+n2-mn,∴24=(m-n)2+mn=16+mn,
即mn=8.
則(m+n)2=(m-n)2+4mn=4a2+4mn=16+4×8=48,
則m+n=$\sqrt{48}$=4$\sqrt{3}$,
故答案為:4$\sqrt{3}$.

點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),根據(jù)雙曲線的離心率求出a的值,結(jié)合雙曲線的定義進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.洛書古稱龜書,是陰陽(yáng)五行術(shù)數(shù)之源,在古代傳說(shuō)中有神龜出于洛水,其甲殼上有如圖所示圖案,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,洛書中蘊(yùn)含的規(guī)律奧妙無(wú)窮,比如:42+92+22=82+12+62.據(jù)此你能得到類似等式是42+32+82=22+72+62

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow a$=(x,1),$\overrightarrow b$=(3,1),若$\overrightarrow a$⊥$\overrightarrow b$,則實(shí)數(shù)x=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.為了調(diào)查高中學(xué)生是否喜歡數(shù)學(xué)與性別的關(guān)系,隨機(jī)抽查男、女學(xué)生各 40 名,得到具體數(shù)據(jù)如表:
 是否喜歡數(shù)學(xué)合計(jì)
男生301040
女生202040
合計(jì)503080
(I)根據(jù)上面的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過 0.025 的前提下,認(rèn)為是否喜歡數(shù)學(xué)與性別有關(guān)?
(II)計(jì)算這 80 位學(xué)生不喜歡數(shù)學(xué)的頻率;(III)用分層抽樣的方法從不喜歡數(shù)學(xué)的男女學(xué)生中抽查 6 人進(jìn)行數(shù)學(xué)問卷調(diào)查,再?gòu)闹谐槿?nbsp;4 份問卷遞交校長(zhǎng)辦,求至少抽出 3 名女生問卷的概率.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k0[來(lái)源:]2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知等邊△ABC的高為3,點(diǎn)P和點(diǎn)M是平面ABC內(nèi)的動(dòng)點(diǎn),且|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|的最小值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,已知$\frac{sin2A}{sinB}=\frac{a}$.
(1)求A;
(2)若a=$\sqrt{7}$,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.是否存在θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).使z2+8z+9=(z-tanθ)(z-tan3θ)對(duì)一切復(fù)數(shù)z恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知平面α和兩條直線a,b,則下列結(jié)論成立的是( 。
A.如果a∥α,b∥α,那么a∥b
B.如果a∥b,a∥α,b?α,那么b∥α
C.如果a∥b,那么α平行于經(jīng)過b的任何平面
D.如果a∥α,那么a與α內(nèi)的任何直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,點(diǎn)P是半徑為1的砂輪邊緣上的一個(gè)質(zhì)點(diǎn),它從初始位置P0開始,按逆時(shí)針方向以角速度ω=1rad/s做圓周運(yùn)動(dòng),記點(diǎn)P的縱坐標(biāo)y關(guān)于時(shí)間t(t≥0,t的單位:s)的函數(shù)關(guān)系為y=f(t).
(1)求y=f(t)的表達(dá)式;
(2)在△ABC中,f(A)=$\frac{3}{5}$,f(B)=-$\frac{12}{13}$,求f(C)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案