8.已知-2,a1,a2,-8成等差數(shù)列,-2,b1,b2,b3,-8成等比數(shù)列,則$\frac{{a}_{2}-{a}_{1}}{_{2}}$等于( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$或-$\frac{1}{2}$

分析 由已知結合等差數(shù)列與等比數(shù)列的性質求得a2-a1、b2,則答案可求.

解答 解:∵-2,a1,a2,-8成等差數(shù)列,
∴${a}_{2}-{a}_{1}=d=\frac{-8-(-2)}{4-1}=-2$,
∵-2,b1,b2,b3,-8成等比數(shù)列,
∴$_{2}=-\sqrt{-2×(-8)}=-4$,
∴$\frac{{a}_{2}-{a}_{1}}{_{2}}=\frac{-2}{-4}=\frac{1}{2}$.
故選:B.

點評 本題考查等差數(shù)列與等比數(shù)列的通項公式,考查等差數(shù)列與等比數(shù)列的性質,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.設$a={log_{\frac{1}{3}}}\frac{1}{2},b={log_{\frac{1}{2}}}\frac{1}{3},c={log_3}\frac{4}{3}$,則a,b,c的大小關系是(  )
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=-x3+ax,其中a∈R,$g(x)=-\frac{1}{2}{x^{\frac{3}{2}}}$,
(1)求函數(shù)f(x)的單調(diào)性;
(2)若f(x)<g(x)在(0,1]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,該幾何體的體積為3,則x的值為(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則其體積為( 。
A.$\frac{{\sqrt{3}π}}{12}$B.$\frac{π}{6}$C.$\frac{{\sqrt{3}π}}{6}$D.$\frac{{\sqrt{3}π}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知向量$\overrightarrow{m}$=($\sqrt{3}$sinx-cosx,1)$\overrightarrow{n}$=(cosx,$\frac{1}{2}$),函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若a,b,c為△ABC的內(nèi)角A,B,C的對邊,$a=2\sqrt{3}$,c=4,且f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知0<a1<a2<a3,則使得${({1-{a_i}x})^2}<1({i=1,2,3})$都成立的x的取值范圍是(  )
A.$({0,\frac{1}{a_3}})$B.$({0,\frac{2}{a_3}})$C.$({0,\frac{1}{a_1}})$D.$({0,\frac{2}{a_1}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.${\frac{5}{6}_{\;}}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖①,這個美妙的螺旋叫做特奧多魯斯螺旋,是由公元5世紀古希臘哲學家特奧多魯斯給出的,螺旋由一系列直角三角形組成(圖②),第一個三角形是邊長為1的等腰直角三角形,以后每個直角三角形以上一個三角形的斜邊為直角邊,另一個直角邊為1.將這些直角三角形在公共頂點處的角依次記為α1,α2,α3,…,則與α1234最接近的角是( 。
參考值:tan55°≈1.428,tan60°≈1.732,tan65°≈2.145,$\sqrt{2}≈1.414$
A.120°B.130°C.135°D.140°

查看答案和解析>>

同步練習冊答案