9.設全集U=R,集合A={1,2,3,4},B={x|x≤2},則A∩(∁UB)=( 。
A.{1,2}B.{3,4}C.{1}D.{1,2,3,4}

分析 根據(jù)補集與交集的定義,寫出A∩(∁UB)即可.

解答 解:全集U=R,集合A={1,2,3,4},B={x|x≤2},
∴∁UB={x|x>2},
∴A∩(∁UB)={3,4}.
故選:B.

點評 本題考查了集合的定義與運算問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.若函數(shù)f(x)滿足:對于任意正數(shù)s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),則稱函數(shù)f(x)為“L函數(shù)”.
(1)試判斷函數(shù)${f_1}(x)={x^2}$與${f_2}(x)={x^{\frac{1}{2}}}$是否是“L函數(shù)”;
(2)若函數(shù)g(x)=3x-1+a(3-x-1)為“L函數(shù)”,求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)為“L函數(shù)”,且f(1)=1,求證:對任意x∈(2k-1,2k)(k∈N*),都有$f(x)-f(\frac{1}{x})>$$\frac{x}{2}-\frac{2}{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知定義在(0,∞)上的函數(shù)f(x)的導函數(shù)f'(x)是連續(xù)不斷的,若方程f'(x)=0無解,且?x∈(0,+∞),f[f(x)-log2015x]=2017,設a=f(20.5),b=f(log43),c=f(logπ3),則a,b,c的大小關(guān)系是a>c>b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設函數(shù)f(x)=ex-ax+b(a,b∈R).
(Ⅰ)若a=b=1,求f(x)在區(qū)間[-1,2]上的取值范圍;
(Ⅱ)若對任意x∈R,f(x)≥0恒成立,記M(a,b)=a-b,求M(a,b)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若x,y滿足不等式$\left\{\begin{array}{l}{x≥2}\\{x+y≤6}\\{x-2y≤0}\end{array}\right.$,則z=x2+y2的最小值是( 。
A.2B.$\sqrt{5}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\sqrt{3}sin2x-cos2x$的圖象在區(qū)間$[{0,\frac{a}{3}}]$和$[{2a,\frac{4π}{3}}]$上均單調(diào)遞增,則正數(shù)a的取值范圍是( 。
A.$[{\frac{π}{6},\frac{5π}{12}}]$B.$[{\frac{5π}{12},π}]$C.$[{\frac{π}{4},π}]$D.$[{\frac{π}{4},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.上饒高鐵站B1進站口有3個閘機檢票通道口,若某一家庭有3個人檢票進站,如果同一個人進的閘機檢票通道口選法不同,或幾個人進同一個閘機檢票通道口但次序不同,都視為不同的進站方式,那么這個家庭3個人的不同進站方式有( 。┓N.
A.24B.36C.42D.60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{-3≤3x-y≤-1}\\{-1≤x+y≤1}\end{array}\right.$,若z=ax+y有最大值$\frac{5}{2}$,則實數(shù)a的值是( 。
A.2B.$\frac{5}{2}$C.-2D.-$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c.若sinA=2sinB,c=4,C=$\frac{π}{3}$,則△ABC的面積為$\frac{8\sqrt{3}}{3}$.

查看答案和解析>>

同步練習冊答案