【題目】已知橢圓:的短軸長為2,且橢圓過點.
(1)求橢圓的方程;
(2)設直線過定點,且斜率為,若橢圓上存在,兩點關于直線對稱,求的取值范圍.
【答案】(1)(2)
【解析】
(1)將點的坐標代入橢圓方程,再結(jié)合,求出的值,即可得到橢圓的方程;
(2)設直線的方程為,,,然后由直線方程與橢圓方程聯(lián)立方程組,消去,判別式大于零,再通過根與系數(shù)的關系,得到線段中點的橫坐標,再將其代入直線方程中得到中點的縱坐標,將線段中點坐標代入直線的方程,可得到的關系式,再結(jié)合判別式得到的不等式可求出的取值范圍.
解:(1)∵橢圓的短軸長為2,∴,即.
又點在上,∴,∴,
∴橢圓的方程為.
(2)由題意設直線的方程為,,,
由消去得,,
∴,即,①
且,
∴線段中點的橫坐標,縱坐標,
即線段的中點為,
將代入直線可得,,②
由①,②可得,,∴.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(e為自然對數(shù)的底數(shù),e≈2.718).對于任意的(0,e),在區(qū)間(0,e)上總存在兩個不同的,,使得==,則整數(shù)a的取值集合是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線:,曲線: .以極點為坐標原點,極軸為軸正半軸建立直角坐標系,曲線的參數(shù)方程為(為參數(shù)).
(1)求,的直角坐標方程;
(2)與,交于不同四點,這四點在上的排列順次為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】質(zhì)檢部門從某超市銷售的甲、乙兩種食用油中分別隨機抽取100桶檢測某項質(zhì)量指標,由檢測結(jié)果得到如圖的頻率分布直方圖:
(I)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標的方差分別為,試比較的大。ㄖ灰髮懗龃鸢福;
(Ⅱ)佑計在甲、乙兩種食用油中各隨機抽取1桶,恰有一個桶的質(zhì)量指標大于20,且另—個桶的質(zhì)量指標不大于20的概率;
(Ⅲ)由頻率分布直方圖可以認為,乙種食用油的質(zhì)量指標值服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差,設表示從乙種食用油中隨機抽取10桶,其質(zhì)量指標值位于(14.55, 38.45)的桶數(shù),求的數(shù)學期望.
注:①同一組數(shù)據(jù)用該區(qū)間的中點值作代表,計算得:
②若,則,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在海島A上有一座海拔1千米的山,山頂設有一個觀察站P,上午11時,測得一輪船在島北偏東30°,俯角為30°的B處,到11時10分又測得該船在島北偏西60°,俯角為60°的C處.
(1)求船的航行速度是每小時多少千米?
(2)又經(jīng)過一段時間后,船到達海島的正西方向的D處,問此時船距島A有多遠?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且,
(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;
(2)是否存在實數(shù),對任意,不等式恒成立?若存在,求出的取值范圍,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個結(jié)論:
①命題“”的否定是“”;
②若是真命題,則可能是真命題;
③“且”是“”的充要條件;
④當時,冪函數(shù)在區(qū)間上單調(diào)遞減.
其中正確的是
A. ①③ B. ②④ C. ①④ D. ②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com