9.已知$x,y∈(0,+∞),{2^{x-3}}={({\frac{1}{2}})^y}$,若$\frac{1}{x}+\frac{m}{y}(m>0)$的最小值為3,則m等于( 。
A.2B.$2\sqrt{2}$C.3D.4

分析 2x-3=$(\frac{1}{2})^{y}$=2-y,可得:x+y=3,m,x,y∈R+,$\frac{1}{x}+\frac{m}{y}$=$\frac{1}{3}$(x+y)$(\frac{1}{x}+\frac{m}{y})$=$\frac{1}{3}$(1+m+$\frac{y}{x}+\frac{mx}{y}$),利用基本不等式的性質(zhì)即可得出.

解答 解:∵2x-3=$(\frac{1}{2})^{y}$=2-y,∴x-3=-y,
∴x+y=3,m,x,y∈R+,
∴$\frac{1}{x}+\frac{m}{y}$=$\frac{1}{3}$(x+y)$(\frac{1}{x}+\frac{m}{y})$=$\frac{1}{3}$(1+m+$\frac{y}{x}+\frac{mx}{y}$)≥$\frac{1}{3}$$(1+m+2\sqrt{\frac{y}{x}•\frac{mx}{y}})$=$\frac{1}{3}(1+m+2\sqrt{m})$=3,當(dāng)且僅當(dāng)$y=\sqrt{m}$x時(shí)取等號.
∴$(\sqrt{m})^{2}$+2$\sqrt{m}$-8=0,m>0.
解得$\sqrt{m}$=2,即m=4.
故選:D.

點(diǎn)評 本題考查了基本不等式的性質(zhì)、方程的解法、指數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,則a0+a1+a2+…+a7=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知角α的終邊過點(diǎn)$P({tan\frac{3π}{4},2})$,則cosα的值為-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體體積是( 。
A.$\frac{{(8+π)\sqrt{3}}}{3}$B.$\frac{{(8+2π)\sqrt{3}}}{6}$C.$\frac{{(8+π)\sqrt{3}}}{6}$D.$\frac{{(4+π)\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知?jiǎng)訄A過定點(diǎn)(0,2),且在x軸上截得的弦長為4,記動(dòng)圓圓心的軌跡為曲線C.
(1)求直線x-4y+2=0與曲線C圍成的區(qū)域面積;
(2)點(diǎn)P在直線l:x-y-2=0上,點(diǎn)Q(0,1),過點(diǎn)P作曲線C的切線PA、PB,切點(diǎn)分別為A、B,證明:存在常數(shù)λ,使得|PQ|2=λ|QA|•|QB|,并求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若某三棱錐的三視圖如圖所示,其中俯視圖為直角梯形,則這個(gè)三棱錐四個(gè)面的面積的最大值是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)的內(nèi)角A,B,C所對的邊分別為a,b,c,且$C=\frac{π}{6}$,a+b=12,面積的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表,其中《方田》章有弧田面積計(jì)算問題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公式為:弧田面積=$\frac{1}{2}•(弦×矢+矢×矢)$,弧田是由圓弧(簡稱為弧田。┖鸵詧A弧的兩端為頂點(diǎn)的線段(簡稱為弧田弦)圍成的平面圖形,公式中“弦”指的是弧
田弦的長,“矢”等于弧田弧所在圓的半徑與圓心到弧田弦的距離之差.現(xiàn)有一弧田,其弦長AB等于6米,其弧所在圓為圓O,若用上述弧田面積計(jì)算公式算得該弧田的面積為$\frac{7}{2}$平方米,則cos∠AOB=(  )
A.$\frac{7}{25}$B.$\frac{3}{25}$C.$\frac{12}{25}$D.$\frac{2}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知:在數(shù)列{an}中,a1=1,${a_{n+1}}=\frac{a_n}{{3{a_n}+1}}$,判斷{an}的單調(diào)性.
小明同學(xué)給出了如下解答思路,請補(bǔ)全解答過程.
第一步,計(jì)算:
根據(jù)已知條件,計(jì)算出:a2=$\frac{1}{4}$,a3=$\frac{1}{7}$,a4=$\frac{1}{10}$.
第二步,猜想:
數(shù)列{an}是遞減(填遞增、遞減)數(shù)列.
第三步,證明:
因?yàn)?{a_{n+1}}=\frac{a_n}{{3{a_n}+1}}$,所以$\frac{1}{{{a_{n+1}}}}=\frac{{3{a_n}+1}}{a_n}=\frac{1}{a_n}+$3.
因此可以判斷數(shù)列$\{\frac{1}{a_n}\}$是首項(xiàng)$\frac{1}{a_1}$=1,公差d=3的等差數(shù)列.
故數(shù)列$\{\frac{1}{a_n}\}$的通項(xiàng)公式為3n-2.
且由此可以判斷出:
數(shù)列$\{\frac{1}{a_n}\}$是遞增(填遞增、遞減)數(shù)列,且各項(xiàng)均為正數(shù)(填正數(shù)、負(fù)數(shù)或零).
所以數(shù)列{an}是遞減(填遞增、遞減)數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案