設(shè)函數(shù),曲線處的切線斜率為0
求b;若存在使得,求a的取值范圍。

(1);(2).

解析試題分析:(1)根據(jù)曲線在某點(diǎn)處的切線與此點(diǎn)的橫坐標(biāo)的導(dǎo)數(shù)的對(duì)應(yīng)關(guān)系,可先對(duì)函數(shù)進(jìn)行求導(dǎo)可得:,利用上述關(guān)系不難求得,即可得;(2)由第(1)小題中所求b,則函數(shù)完全確定下來(lái),則它的導(dǎo)數(shù)可求出并化簡(jiǎn)得:根據(jù)題意可得要對(duì)的大小關(guān)系進(jìn)行分類(lèi)討論,則可分以下三類(lèi):(ⅰ)若,則,故當(dāng)時(shí),,單調(diào)遞增,所以,存在,使得的充要條件為,即,所以.(ⅱ)若,則,故當(dāng)時(shí),;當(dāng)時(shí),,單調(diào)遞減,在單調(diào)遞增.所以,存在,使得的充要條件為,無(wú)解則不合題意.(ⅲ)若,則.綜上,a的取值范圍是.
試題解析:(1)
由題設(shè)知,解得.
(2)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/9/1g8qo2.png" style="vertical-align:middle;" />,由(1)知,,

(。┤,則,故當(dāng)時(shí),單調(diào)遞增,
所以,存在,使得的充要條件為,即,
所以.
(ⅱ)若,則,故當(dāng)時(shí),;
當(dāng)時(shí),,單調(diào)遞減,在單調(diào)遞增.
所以,存在,使得的充要條件為,
,所以不合題意.
(ⅲ)若,則.
綜上,a的取值范圍是.
考點(diǎn):1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè)為正實(shí)數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)處取得極值,不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),證明不等式 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知x=-是函數(shù)f(x)=ln(x+1)-x+x2的一個(gè)極值點(diǎn)。
(1)求a的值;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時(shí),
(3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),若上的最小值記為.
(1)求;
(2)證明:當(dāng)時(shí),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為圓周率,為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求,,這6個(gè)數(shù)中的最大數(shù)與最小數(shù);
(3)將,,,這6個(gè)數(shù)按從小到大的順序排列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),其中.
(1)討論在其定義域上的單調(diào)性;
(2)當(dāng)時(shí),求取得最大值和最小值時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案