(本小題滿分14分)
已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時(shí),
(3)證明:對任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有

(1)當(dāng)時(shí),有極小值無極大值.
(2)見解析.(3)見解析.

解析試題分析:(1)由,得.
從而.
,得駐點(diǎn).討論可知:
當(dāng)時(shí),單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
當(dāng)時(shí),有極小值,無極大值.
(2)令,則.
根據(jù),知在R上單調(diào)遞增,又,
當(dāng)時(shí),由,即得.
(3)思路一:對任意給定的正數(shù)c,取,
根據(jù).得到當(dāng)時(shí),.
思路二:令,轉(zhuǎn)化得到只需成立.
,,應(yīng)用導(dǎo)數(shù)研究的單調(diào)性.
思路三:就①,②,加以討論.
試題解析:解法一:
(1)由,得.
,得.
所以,.
,得.
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
所以當(dāng)時(shí),有極小值,
且極小值為,
無極大值.
(2)令,則.
由(1)得,,即.
所以在R上單調(diào)遞增,又,
所以當(dāng)時(shí),,即.
(3)對任意給定的正數(shù)c,取,
由(2)知,當(dāng)時(shí),.
所以當(dāng)時(shí),,即.
因此,對任意給定的正數(shù)c,總存在,當(dāng)時(shí),恒有.
解法二:(1)同解法一.
(2)同解法一.
(3)令,要使不等式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)求函數(shù)的極值;(2)若恒成立,求實(shí)數(shù)的值;
(3)設(shè)有兩個(gè)極值點(diǎn)、(),求實(shí)數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為20,求它在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上為增函數(shù),
(1)求的值;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(3)若在上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)時(shí)取得極小值.
(1)求實(shí)數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3a/6/7cwof.png" style="vertical-align:middle;" />?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),曲線處的切線斜率為0
求b;若存在使得,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)為常數(shù))的圖象與軸交于點(diǎn),曲線在點(diǎn)
的切線斜率為-1.
(I)求的值及函數(shù)的極值;
(II)證明:當(dāng)時(shí),
(III)證明:對任意給定的正數(shù),總存在,使得當(dāng),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.若
(1)求的值;
(2)求的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(是常數(shù))在處的切線方程為,且.
(1)求常數(shù)的值;
(2)若函數(shù)()在區(qū)間內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案