【題目】如圖是第七屆國際數(shù)學(xué)教育大會(huì)的會(huì)徽,它的主題圖案由一連串如圖所示的直角三角形演化而成.設(shè)其中的第一個(gè)直角是等腰三角形,且,則,,現(xiàn)將沿翻折成,則當(dāng)四面體體積最大時(shí),它的表面有________個(gè)直角三角形;當(dāng)時(shí),四面體外接球的體積為________.

【答案】4

【解析】

當(dāng)四面體體積最大時(shí),平面平面,由此推出,根據(jù)勾股定理可以推出,從而可得有4個(gè)直角三角形,根據(jù),可得點(diǎn)在平面內(nèi)的射影是的中點(diǎn),且四面體的外接球的球心在直線上,根據(jù)勾股定理可求得外接球的半徑,代入體積公式可求得結(jié)果.

當(dāng)四面體體積最大時(shí),平面平面,因?yàn)?/span>,所以根據(jù)平面與平面垂直的性質(zhì)定理可得平面,所以,所以△為直角三角形,所以,又

所以,所以,所以三角形為直角三角形,

所以它的表面有4個(gè)直角三角形,

因?yàn)?/span>,所以點(diǎn)在平面內(nèi)的射影是直角三角形的外心,

也就是的中點(diǎn),且四面體的外接球的球心在直線上,如圖:

容易求得,設(shè),

則在直角三角形中,由勾股定理可得,

所以,解得,

所以四面體外接球的體積為.

故答案為:(14 2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知、、分別為的外心,重心,.

1)求點(diǎn)的軌跡的方程;

2)是否存在過的直線交曲線,兩點(diǎn)且滿足,若存在求出的方程,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)的坐標(biāo)為,離心率

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)點(diǎn)、為橢圓上位于第一象限的兩個(gè)動(dòng)點(diǎn),滿足,的中點(diǎn),線段的垂直平分線分別交軸、軸于、兩點(diǎn).

(。┣笞C:的中點(diǎn);

(ⅱ)若為三角形的面積),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCDBDEF均為菱形,,且

求證:平面BDEF;

求直線AD與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在統(tǒng)計(jì)學(xué)中,同比增長(zhǎng)率一般是指和去年同期相比較的增長(zhǎng)率,環(huán)比增長(zhǎng)率一般是指和前一時(shí)期相比較的增長(zhǎng)率.2020229日人民網(wǎng)發(fā)布了我國2019年國民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)圖表,根據(jù)2019年居民消費(fèi)價(jià)格月度漲跌幅度統(tǒng)計(jì)折線圖,下列說法正確的是( )

A.2019年我國居民每月消費(fèi)價(jià)格與2018年同期相比有漲有跌

B.2019年我國居民每月消費(fèi)價(jià)格中2月消費(fèi)價(jià)格最高

C.2019年我國居民每月消費(fèi)價(jià)格逐月遞增

D.2019年我國居民每月消費(fèi)價(jià)格3月份較2月份有所下降

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式有且僅有兩個(gè)正整數(shù)解(其中e=2.71828… 為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)的取值范圍是( )

A. ,] B. ,] C. [, D. [,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某口罩廠一年中各月份的收入、支出情況如圖所示(單位:萬元,下列說法中錯(cuò)誤的是(注:月結(jié)余=月收入一月支出)( )

A.上半年的平均月收入為45萬元B.月收入的方差大于月支出的方差

C.月收入的中位數(shù)為70D.月結(jié)余的眾數(shù)為30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時(shí),周日測(cè)試

方式二:周六一天培訓(xùn)4小時(shí),周日測(cè)試

公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測(cè)試達(dá)標(biāo)的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案