3.已知函數(shù)f(x)=asinx+bcosx(a≠0)在$x=\frac{π}{4}$處取得最小值,則函數(shù)$f(\frac{3π}{4}-x)$是( 。
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn)$(\frac{3π}{2},0)$對稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)$(\frac{3π}{2},0)$對稱

分析 由題意可得-$\frac{\sqrt{2}}{2}$(a+b)=-$\sqrt{{a}^{2}{+b}^{2}}$,即有b=a,故f(x)=$\sqrt{2}$asin(x+$\frac{π}{4}$).求得f($\frac{3π}{4}$-x)=$\sqrt{2}$asinx,再利用正弦函數(shù)的性質(zhì)得出結(jié)論.

解答 解:函數(shù)f(x)=asinx+bcosx=$\sqrt{{a}^{2}{+b}^{2}}$sin(x+θ)(a≠0)的周期為2π,
在$x=\frac{π}{4}$處取得最小值,
故有-$\frac{\sqrt{2}}{2}$(a+b)=-$\sqrt{{a}^{2}{+b}^{2}}$,即有b=a,∴f(x)=$\sqrt{2}$asin(x+$\frac{π}{4}$).
則f($\frac{3π}{4}$-x)=$\sqrt{2}$asin(π-x)=$\sqrt{2}$asinx.
則函數(shù)y=f($\frac{3π}{4}$-x)為奇函數(shù),對稱中心為(kπ,0),k∈Z,
故選:C.

點(diǎn)評 本題考查三角函數(shù)的圖象和性質(zhì),考查三角函數(shù)的最值和奇偶性和對稱性,考查兩角和的正弦公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線G以原點(diǎn)O為中心,過$(\sqrt{5},\;4)$點(diǎn),且以拋物線C:y2=4x的焦點(diǎn)為右頂點(diǎn),那么雙曲線G的方程為${x^2}-\frac{y^2}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm-1=13,Sm=0,Sm+1=-15.其中m∈N*且m≥2,則數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和的最大值為(  )
A.$\frac{24}{143}$B.$\frac{1}{143}$C.$\frac{24}{13}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)g(x)=lnx-ax2+(2-a)x,a∈R.
(1)求g(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)=g(x)+(a+1)x2-2x,x1,x2(x1<x2)是函數(shù)f(x)的兩個(gè)零點(diǎn),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),證明:f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F(xiàn)分別是線段DC和BC上的動(dòng)點(diǎn),則$\overrightarrow{AC}•\overrightarrow{EF}$的取值范圍是[-4,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A、B、C所對的邊分別為a,b,c,滿足(2a-c)cosB=bcosC.
(1)求B的大。
(2)如圖,AB=AC,在直線AC的右側(cè)取點(diǎn)D,使得AD=2CD=4.當(dāng)角D為何值時(shí),四邊形ABCD面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$f(x)=sinxcosx-{cos^2}(x+\frac{π}{4})$x∈[-π,0],則f(x)的單調(diào)減區(qū)間為$[-\frac{3π}{4},0]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x(a-$\frac{1}{e^x}$),曲線y=f(x)上存在兩個(gè)不同點(diǎn),使得曲線在這兩點(diǎn)處的切線都與y軸垂直,則實(shí)數(shù)a的取值范圍是( 。
A.(-e2,+∞)B.(-e2,0)C.(-$\frac{1}{e^2}$,+∞)D.(-$\frac{1}{e^2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x<-2或x>4},B={x|2x-1<8},則A∩B=( 。
A.{x|x≥4}B.{x|x>4}C.{x|x≥-2}D.{x|x<-2}

查看答案和解析>>

同步練習(xí)冊答案