A. | $\frac{8}{9}$ | B. | $-\frac{8}{9}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
分析 利用兩個向量垂直的性質(zhì)可得$\overrightarrow{AC}$•$\overrightarrow{BC}$=0,再利用兩個向量數(shù)量積公式求得sinα+cosα的值,再平方,可得sin2α的值.
解答 解:∵已知$A(3,0),B(0,3),C(cosα,sinα),\overrightarrow{AC}⊥\overrightarrow{BC}$,
∴$\overrightarrow{AC}$•$\overrightarrow{BC}$=(cosα-3,sinα)•(cosα,sinα-3)=(cosα-3)cosα+sinα(sinα-3)
=1-3(sinα+cosα)=0,∴sinα+cosα=$\frac{1}{3}$,平方可得1+2sinαcosα=$\frac{1}{9}$,
∴2sinαcosα=sin2α=-$\frac{8}{9}$,
故選:B.
點評 本題主要考查兩個向量垂直的性質(zhì),兩個向量坐標(biāo)形式的運算,兩個向量數(shù)量積公式,二倍角公式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {a1|a1≥2017,a1∈N+} | B. | {a1|a1≥2016,a1∈N+} | C. | {a1|a1≥2015,a1∈N+} | D. | {a1|a1≥2014,a1∈N+} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-i | B. | -1+i | C. | 1+i | D. | -1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}$+8π | B. | $\frac{16}{3}$+8π | C. | $\frac{8}{3}$+16π | D. | $\frac{16}{3}$+16π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com