16.在平面直角坐標(biāo)系xOy中,設(shè)直線x-y+m=0(m>0)與圓x2+y2=8交于不同的兩點(diǎn)A,B,若圓上存在點(diǎn)C,使得△ABC為等邊三角形,則正數(shù)m的值為2.

分析 先由圓心角與圓周角的關(guān)系得到∠AOB=120°,再利用余弦定理得到BD,最后借助于點(diǎn)到直線的距離公式可解得m即可.

解答 解:根據(jù)題意畫(huà)出圖形,連接OA,OB,作OD垂直于AB于D點(diǎn),
因?yàn)椤鰽BC為等邊三角形,所以∠AOB=120°,由余弦定理知:AB=2$\sqrt{6}$,
故BD=$\sqrt{6}$,所以O(shè)D=$\sqrt{2}$,
所以O(shè)(0,0)到直線AB的距離$\frac{|m|}{\sqrt{2}}$=$\sqrt{2}$,解得m=±2,
∵m是正數(shù),
∴m的值為2
故答案為2.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查余弦定理,考查點(diǎn)到直線的距離公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2sinxcosx,x∈R.
(1)若$f({\frac{α}{2}})=\frac{3}{5}$,$α∈({\frac{π}{2},π})$,求$cos({α-\frac{π}{3}})$的值;
(2)求f(x)的遞減區(qū)間;
(3)求曲線y=f(x)在坐標(biāo)原點(diǎn)O處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=2ax+bx-1-2lnx(a∈R).
(1)當(dāng)b=0時(shí),討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)?α∈[1,3],?x∈(0,+∞),f(x)≥2bx-3恒成立,求實(shí)數(shù)b的取值范圍;
(3)當(dāng)x>y>e-1時(shí),求證:exln(y+1)>eyln(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.實(shí)數(shù)m取什么值時(shí),復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m)i的點(diǎn)
(1)z為純虛數(shù)              
(2)位于第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別是a,b,c,則:
①若cosBcosC>sinBsinC,則△ABC一定是鈍角三角形;
②若acosA=bcosB,則△ABC為等腰三角形;
③$\overrightarrow a=(tanA+tanB,tanC)$,$\overrightarrow b=(1,1)$,若$\overrightarrow a•\overrightarrow b>0$,則△ABC為銳角三角形;
④若O為△ABC的外心,$\overrightarrow{AO}•\overrightarrow{BC}=\frac{1}{2}({b^2}-{c^2})$;
⑤若sin2A+sin2B=sin2C,$且\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow 0$,$則\frac{{{{|{\overrightarrow{OA}}|}^2}+{{|{\overrightarrow{OB}}|}^2}}}{{{{|{\overrightarrow{OC}}|}^2}}}=5$
以上敘述正確的序號(hào)是①③④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知長(zhǎng)方體ABCD-A1B1C1D1,AB=2,AA1=1,直線BD與平面AA1B1B所成的角為30°,AE垂直BD于點(diǎn)E,F(xiàn)為A1B1的中點(diǎn).
(1)求異面直線AE與BF所成角的余弦值;
(2)求平面BDF與平面AA1B1B所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別是a,b,c,A=$\frac{3π}{4}$,c=6,b=3$\sqrt{2}$,點(diǎn)D在BC邊上,且AD=BD,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.空間中任意放置的棱長(zhǎng)為2的正四面體ABCD,下列命題正確的是①②③④. (寫出所有正確命題的編號(hào))
①正四面體ABCD的主視圖面積可能是$\sqrt{2}$;
②正四面體ABCD的主視圖面積可能是$\frac{2\sqrt{6}}{3}$;
③正四面體ABCD的主視圖面積可能是$\sqrt{3}$;
④正四面體ABCD的主視圖面積可能是2;
⑤正四面體ABCD的主視圖面積可能是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知橢圓 $\frac{x^2}{16}+\frac{y^2}{25}=1$的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,弦 AB過(guò)點(diǎn)F2,則△ABF1的周長(zhǎng)為( 。
A.10B.12C.16D.20

查看答案和解析>>

同步練習(xí)冊(cè)答案