19.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bsinA=$\sqrt{3}$acosB
(1)求角B的大;
(2)若b=$\sqrt{3}$,求△ABC周長(zhǎng)的取值范圍.

分析 (1)由正弦定理化簡(jiǎn)已知可得:sinBsinA=$\sqrt{3}$sinAcosB,得tanB=$\sqrt{3}$,即可求B的值.
(2)利用及余弦定理,基本不等式可得(a+c)2≤12,再根據(jù)三角形兩邊之和大于第三邊,從而可求三角形周長(zhǎng)的范圍

解答 解:(1)∵bsinA=$\sqrt{3}$acosB,
由正弦定理可得:sinBsinA=$\sqrt{3}$sinAcosB,即得tanB=$\sqrt{3}$,
∴B=$\frac{π}{3}$
(2)b=$\sqrt{3}$,由余弦定理,得b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac
≥(a+c)2-3($\frac{a+c}{2}$)2=$\frac{1}{4}$(a+c)2,當(dāng)且僅當(dāng)a=c時(shí),等號(hào)成立
∴(a+c)2≤12,
∴a+c≤2$\sqrt{3}$,
∵a+c>b=$\sqrt{3}$
∴2$\sqrt{3}$<a+c+b≤3$\sqrt{3}$,
∴△ABC周長(zhǎng)的取值范圍為(2$\sqrt{3}$,3$\sqrt{3}$].

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,基本不等式,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.化簡(jiǎn):($\frac{5}{6}$a${\;}^{\frac{1}{3}}$•b-2)(-3a${\;}^{-\frac{1}{2}}$•b-1)÷(4a${\;}^{\frac{2}{3}}$•b-3)${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知正項(xiàng)等比數(shù)列{bn}的前n項(xiàng)和為Sn,b3=4,S3=7,數(shù)列{an}滿足an+1-an=n+1(n∈N*),且a1=b1
(1)求數(shù)列[an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和Sn,求證:Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.盒中有4個(gè)白球,5個(gè)紅球,從中任取3個(gè)球,則抽出2個(gè)白球1個(gè)紅球的概率是( 。
A.$\frac{37}{42}$B.$\frac{17}{42}$C.$\frac{5}{14}$D.$\frac{17}{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.為了研究某班學(xué)生的腳長(zhǎng)x(單位:厘米)和身高y(單位:厘米)的關(guān)系,從該班隨機(jī)抽取10名學(xué)生,根據(jù)測(cè)量數(shù)據(jù)的散點(diǎn)圖可以看出y與x之間有線性相關(guān)關(guān)系,設(shè)其回歸直線方程為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.已知$\sum_{i=1}^{10}{x}_{i}$=225,$\sum_{i=1}^{10}{y}_{i}$=1600,$\stackrel{∧}$=4.該班某學(xué)生的腳長(zhǎng)為24,據(jù)此估計(jì)其身高 166.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬(wàn)元),有如下的統(tǒng)計(jì)資料:
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
若由資料知,y對(duì)x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$的回歸系數(shù)a、b;
i12345合計(jì)
xi2345620
yi2.23.85.56.57.025
xiyi4.411.422.032.542112.3
?${x_i}^2$4916253690
?$\overline{x}=4$;?$\overline{y}=5$;?$\sum_{i=1}^n{{x_i}^2}=90$;$\sum_{i=1}^n{{x_i}{y_i}}=112.3$
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
在線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)計(jì)算$8{1}^{\frac{1}{2}}$-(-$\frac{1}{8}$)-1+30                 
(2)計(jì)算lg100+lg$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.方程y=ax+b和y=bx+a表示的直線可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}是等比數(shù)列,其前n項(xiàng)和是Sn,a1+2a2=0,${S_4}-{S_2}=\frac{1}{8}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)求滿足${a_n}≥\frac{1}{16}$的n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案