19.在△ABC中,角A,B,C的對邊分別為a,b,c,若$acosB=\frac{C}{2},|{\overrightarrow{CA}+\overrightarrow{CB}}|=|{\overrightarrow{CA}-\overrightarrow{CB}}|$,則△ABC為( 。
A.等邊三角形B.等腰直角三角形C.銳角三角形D.鈍角三角形

分析 設(shè)AB的中點為D,由余弦定理、向量知識推導(dǎo)出a=b,CD=AD=BD,由此能求出△ABC為等腰直角三角形.

解答 解:設(shè)AB的中點為D,
∵在△ABC中,角A,B,C的對邊分別為a,b,c,
$acosB=\frac{c}{2},|{\overrightarrow{CA}+\overrightarrow{CB}}|=|{\overrightarrow{CA}-\overrightarrow{CB}}|$,
∴$\left\{\begin{array}{l}{a×\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}=\frac{c}{2}}\\{CD=\frac{1}{2}AB}\end{array}\right.$,
整理,得a=b,CD=AD=BD,
∴△ABC為等腰直角三角形.
故選:B.

點評 本題考查三角形形狀的判斷,考查余弦定理、向量等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知sin($\frac{π}{3}$+α)=$\frac{3}{5}$,$\frac{π}{6}$<α<$\frac{2π}{3}$,則cosα=$\frac{3\sqrt{3}-4}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)m∈N*,且m<25,則(20-m)(21-m)…(26-m)等于( 。
A.$A_{26-m}^7$B.$C_{26-m}^7$C.$A_{20-m}^7$D.$A_{26-m}^6$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2,$cosC=-\frac{1}{4}$.
(Ⅰ)如果b=3,求c的值;
(Ⅱ)如果$c=2\sqrt{6}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某興趣小組有9名學生.若從9名學生中選取3人,則選取的3人中恰好有一個女生的概率是$\frac{15}{28}$.
(1)該小組中男女學生各多少人?
(2)9個學生站成一列隊,現(xiàn)要求女生保持相對順序不變(即女生 前后順序保持不變)重新站隊,問有多少種重新站隊的方法?(要求用數(shù)字作答)
(3)9名學生站成一列,要求男生必須兩兩站在一起,有多少種站隊的方法?(要求用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知對?x∈(0,+∞),不等式2ax>ex-1恒成立,則實數(shù)a的最小值是( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知復(fù)數(shù)z=1-$\frac{1}{i}$,則$\overline{z}$=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知α,β為銳角,且$cosα=\frac{{7\sqrt{2}}}{10}$,cos(α+β)=$\frac{2\sqrt{5}}{5}$,則cos2β=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.有一些自然數(shù)排成的倒三角,從第二行起,每個數(shù)字等于“兩肩”數(shù)的和,最后一行只有一個數(shù)M,那么M=576.

查看答案和解析>>

同步練習冊答案