14.已知sinα-2cosα=0,求
(1)$\frac{2sinα+cosα}{sinα-3cosα}$;
(2)2sinαcosα.

分析 (1)由已知式子可得tanα的值,變形要求的式子代值計算可得答案;
(2)由條件利用同角三角函數(shù)的基本關(guān)系求得sinα,cosα的值,然后代值計算可得答案.

解答 解:(1)∵sinα-2cosα=0,∴$tanα=\frac{sinα}{cosα}=2$
∴$\frac{2sinα+cosα}{sinα-3cosα}$=$\frac{2tanα+1}{tanα-3}=\frac{2×2+1}{2-3}=-5$;
(2)∵sinα-2cosα=0,sin2α+cos2α=1,解得sinα=$\frac{2\sqrt{5}}{5}$,cosα=$\frac{\sqrt{5}}{5}$,或sinα=-$\frac{2\sqrt{5}}{5}$,cosα=$-\frac{\sqrt{5}}{5}$,
∴2sinαcosα=$\frac{4}{5}$.

點評 本題考查同角三角函數(shù)基本關(guān)系的應(yīng)用,弦化切是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$f(α)=\frac{sin(π-α)cos(2π-α)tan(π+α)}{tan(-π-α)sin(-π-α)}$.
(1)化簡f(α).
(2)若$α=-\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列結(jié)論:①數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$…,的一個通項公式是an=$\sqrt{3n-1}$; ②已知數(shù)列{an},a1=3,a2=6,且an+2=an+1-an,則數(shù)列的第五項為-6; ③在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=450,則a2+a8=180; ④在等差數(shù)列{an}中,a2=1,a4=5,則{an}的前5項和S5=15,其中正確的個數(shù)是( 。
A.2B.3C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果執(zhí)行如圖的程序框圖,那么輸出的值是$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知tanα=-2
(1)求$\frac{3}{2}$sin2α-2cos2α+3的值;
(2)求$\frac{sin(4π-α)cos(3π+α)cos(\frac{π}{2}+α)cos(\frac{5}{2}π-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{13}{2}π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.不等式2x2-x-3≥0的解集為{x|x≤-1或x$≥\frac{3}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個分?jǐn)?shù)段[40,50),[50,60),…,[90,100],畫出如圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
(1)求a并估計這次考試中該學(xué)科的中位數(shù)、平均值;
(2)現(xiàn)根據(jù)本次考試分?jǐn)?shù)分成下列六段(從低分段到高分段依次為第一組、第二組…第六組)為提高本班數(shù)學(xué)整體成績,決定組與組之間進行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差不小于30分(以分?jǐn)?shù)段為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù),如:[40,50),[70,80)這兩組分?jǐn)?shù)之差為30分),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對于函數(shù)f(x),若在定義域x內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.p:f(x)=m+2x為定義在[-1,1]上的“局部奇函數(shù)”;q:曲線g(x)=x2+(5m+1)x+1與x軸交于不同的兩點;若“p∧q”為假命題,“p∨q”為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|=1$,($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,$({2\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,則向量$\overrightarrow a$,$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

同步練習(xí)冊答案