13.函數(shù)f(x)=$\frac{\sqrt{1-co{s}^{2}x}}{cosx}$( 。
A.在(-$\frac{π}{2}$,$\frac{π}{2}$)上遞增B.在(-$\frac{π}{2}$,0]上遞增,在(0,$\frac{π}{2}$)上遞減
C.在(-$\frac{π}{2}$,$\frac{π}{2}$)上遞減D.在(-$\frac{π}{2}$,0]上遞減,在(0,$\frac{π}{2}$)上遞增

分析 f(x)=$\frac{\sqrt{1-co{s}^{2}x}}{cosx}$=$\frac{|sinx|}{cosx}$,去掉絕對(duì)值,即可得出結(jié)論.

解答 解:f(x)=$\frac{\sqrt{1-co{s}^{2}x}}{cosx}$=$\frac{|sinx|}{cosx}$,
在(-$\frac{π}{2}$,0]上,f(x)=-tanx,函數(shù)單調(diào)遞減,在(0,$\frac{π}{2}$)上,f(x)=tanx,函數(shù)單調(diào)遞增,
故選D.

點(diǎn)評(píng) 本題考查三角函數(shù)的性質(zhì),考查學(xué)生的轉(zhuǎn)化能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,ABC-A1B1C1是直三棱柱,∠BCA=90°,點(diǎn)E、F分別是A1B1、A1C1的中點(diǎn),若BC=CA=AA1,則BE與AF所成角的余弦值為$\frac{\sqrt{30}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),若直線y=2x與雙曲線的一個(gè)交點(diǎn)的橫坐標(biāo)為c,則雙曲線的離心率為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{y≥x}\end{array}\right.$,則2y-x的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.袋中有大小質(zhì)地完全相同的2個(gè)紅球和3個(gè)黑球,不放回地摸出兩球,設(shè)“第一次摸得紅球”為事件A,“摸得的兩球同色”為事件B,則概率P(B|A)為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={-2,-1,0,1,2},B={x|$\frac{x+1}{x-2}$<0},則A∩B=( 。
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在△ABC中,∠BAC=90°,點(diǎn)D為斜邊BC上一點(diǎn),且AC=CD=2.
(1)若CD=2BD,求AD的值;
(2)若AD=$\sqrt{2}$BD,求角B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將函數(shù)f(x)=$\sqrt{3}$sinx+cosx的圖象向右平移$\frac{π}{3}$后得到函數(shù)g(x)的圖象,則函數(shù)g(x)的圖象的一條對(duì)稱軸方程是( 。
A.x=$\frac{π}{3}$B.x=$\frac{π}{6}$C.x=-$\frac{π}{6}$D.x=-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=alnx-$\frac{1}{2}$ax2-8
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)a>0,若對(duì)?x1,x2∈[2,+∞),且x1≠x2,恒有|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|≥2,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案