11.已知i為虛數(shù)單位,若復(fù)數(shù)z滿足(1-i)z=1+i,則|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)z,再由復(fù)數(shù)求模公式計(jì)算得答案.

解答 解:由(1-i)z=1+i,
得$z=\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}=\frac{2i}{2}=i$,
則|z|=1.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{36}$=1上一點(diǎn)P(x,y)到雙曲線一個(gè)焦點(diǎn)的距離是9,則x2+y2的值是133.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓F1:(x+$\sqrt{3}$)2+y2=9與圓F2:(x-$\sqrt{3}$)2+y2=1,以圓F1、F2的圓心分別為左右焦點(diǎn)的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過兩圓的交點(diǎn).
(1)求橢圓C的方程;
(2)直線x=2$\sqrt{3}$上有兩點(diǎn)M、N(M在第一象限)滿足$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{2}N}$=0,直線MF1與NF2交于點(diǎn)Q,當(dāng)|MN|最小時(shí),求線段MQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.要得到函數(shù)f(x)=sin2x的圖象,只需將函數(shù)g(x)=cos2x的圖象( 。
A.向左平移$\frac{π}{2}$個(gè)周期B.向右平移$\frac{π}{2}$個(gè)周期
C.向左平移$\frac{π}{4}$個(gè)周期D.向右平移$\frac{π}{4}$個(gè)周期

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有人持金出五關(guān),前關(guān)二稅一,次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤.問本持金幾何”其意思為“今有人持金出五關(guān),第1關(guān)收稅金$\frac{1}{2}$,第2關(guān)收稅金$\frac{1}{3}$,第3關(guān)收稅金$\frac{1}{4}$,第4關(guān)收稅金$\frac{1}{5}$,第5關(guān)收稅金$\frac{1}{6}$,5關(guān)所收稅金之和,恰好1斤重,設(shè)這個(gè)人原本持金為x,按此規(guī)律通過第8關(guān),”則第8關(guān)需收稅金為$\frac{1}{72}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)是定義R上的偶函數(shù),且當(dāng)x>0時(shí),f(x)=2x,則f(log4$\frac{1}{9}$)的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=f(x)圖象上不同兩點(diǎn)A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,規(guī)定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$叫做曲線在點(diǎn)A與點(diǎn)B之間的“彎曲度”.設(shè)曲線y=ex上不同的兩點(diǎn)A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<3恒成立,則實(shí)數(shù)t的取值范圍是(  )
A.(-∞,3]B.(-∞,2]C.(-∞,1]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知變量x,y滿足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$則目標(biāo)函數(shù)z=$\frac{x+y+3}{x+2}$的最大值為( 。
A.$\frac{5}{2}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若x,y滿足不等式$\left\{\begin{array}{l}x≥2\\ x+y≤6\\ x-2y≤0\end{array}\right.$則z=x-y的取值范圍是[-2,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案