18.若直線l不平行于平面α,且l?α,則( 。
A.α與直線l至少有兩個公共點B.α內(nèi)的直線與l都相交
C.α內(nèi)的所有直線與l異面D.α內(nèi)不存在與l平行的直線

分析 由已知直線l不平行于平面α,且l?α,得到直線與平面相交,所以平面內(nèi)不存在與直線平行的直線.

解答 解:由已知直線l不平行于平面α,且l?α,得到直線與平面相交,所以直線與平面只有一個公共點;平面內(nèi)直線與l相交或者異面;所以平面內(nèi)不存在與直線平行的直線.
故選:D.

點評 本題考查了直線與平面的位置關(guān)系;考查學(xué)生的空間想象能力;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.集合﹛x∈Z|(x-2)(x2-3)=0﹜用列舉法表示為( 。
A.﹛2,$\sqrt{3}$,-$\sqrt{3}$﹜B.﹛2,$\sqrt{3}$,﹜C.﹛2,-$\sqrt{3}$﹜D.﹛2﹜

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知變量x,y滿足$\left\{\begin{array}{l}x+y≥1\\ x-2y≥-2\\ 3x-2y≤3\end{array}\right.$,則x2+y2的最小值為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=-x2+mx-1(m∈R).
(1)試求f(x)在區(qū)間[$\frac{1}{2}$,1]上的最大值;
(2)若函數(shù)|f(x)|在區(qū)間($\frac{1}{2}$,+∞)上單調(diào)遞增,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題中正確命題的個數(shù)是( 。
(1)命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”;
(2)在回歸直線$\widehat{y}$=1+2x中,x增加1個單位時,y一定減少2個單位;
(3)命題p:?x0∈R,使得x02+x0+1<0,則¬p:?x∈R,均有x2+x+1≥0;
(4)設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=P0,則P(-1<ξ<0)=$\frac{1}{2}$-P0
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=ax+2014+2013(a>0且a≠1)的圖象恒過定點(-2014,2014).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,$\overrightarrow{AB}•\overrightarrow{AC}<0$,則△ABC是(  )
A.鈍角三角形B.直角三角形C.銳角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.有關(guān)下列命題:
①.命題“若x2-3x-4=0,則x=4”的否命題為“若x2-3x-4≠0,則x≠4”
②.在三角形ABC中,“A>$\frac{π}{3}$”是“cosA<$\frac{1}{2}$”的充要條件
③.若p∧q是假命題,則p,q都是假命題
④.命題“若x>1且y<-3,則x-y>4”的等價命題是“若x-y≤4,則x≤1或y≥-3”
其中說法正確序號有①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題p:?x0>0,x02-2x0-3=0,則命題¬p是(  )
A.?x0≤0,x02-2x0-3=0B.?x0>0,x02-2x0-3=0
C.?x0≤0,x02-2x0-3≠0D.?x0>0,x02-2x0-3≠0

查看答案和解析>>

同步練習(xí)冊答案