19.已知i是虛數(shù)單位,z=$\frac{2+i}{i}$,則z的模|z|=$\sqrt{5}$.

分析 化簡z,求出z的模即可.

解答 解:∵z=$\frac{2+i}{i}$=$\frac{(2+i)i}{i•i}$=1-2i,
∴z的模|z|=$\sqrt{1+4}$=$\sqrt{5}$,
故答案為:$\sqrt{5}$.

點評 本題考查了復數(shù)的化簡,復數(shù)求模問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.定義在R上的函數(shù)f(x)滿足f(1)=1,且對任意x∈R都有f′(x)<$\frac{1}{3}$,則不等式f(lgx)>$\frac{lgx+2}{3}$的解集為(0,10).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,-1),則$\overrightarrow a$•$\overrightarrow b$=(  )
A.-1B.3C.(2,1)D.(3,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知直四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2AB,E為AA1的中點,則異面直線BE與CD1所成角的余弦值為( 。
A.$\frac{\sqrt{10}}{10}$B.$\frac{1}{5}$C.$\frac{3\sqrt{10}}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求5x2-15x+50除以5x的商式及余式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知i是虛數(shù)單位,復數(shù)z滿足|z-1|=1,則|z-2i|的最大值是$\sqrt{5}$+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.“a=1”是“直線l1:ax+y+1=0,l2:(a+2)x-3y-2=0垂直”的充分不必要條件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分也不必要”之一)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中,正確的命題是( 。
A.若z1、z2∈C,z1-z2>0,則z1>z2B.若z∈R,則z•$\overline{z}$=|z|2不成立
C.z1、z2∈C,z1•z2=0,則z1=0或z2=0D.z1、z2∈C,z12+z22=0,則z1=0且z2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在Rt△ACB中,∠C=90°,CD⊥AB于D,若BD:AD=4:1,求tan∠CBD的值.

查看答案和解析>>

同步練習冊答案