14.設(shè)a∈R,若復(fù)數(shù)z=$\frac{a-i}{3+i}$(i是虛數(shù)單位)的實(shí)部為$\frac{1}{2}$,則復(fù)數(shù)z的虛部為(  )
A.$\frac{13}{30}$B.-$\frac{13}{30}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),由實(shí)部為$\frac{1}{2}$求得a值,進(jìn)一步得到復(fù)數(shù)z的虛部.

解答 解:由z=$\frac{a-i}{3+i}$=$\frac{(a-i)(3-i)}{(3+i)(3-i)}=\frac{(3a-1)-(a+3)i}{10}$的實(shí)部為$\frac{1}{2}$,
得$\frac{3a-1}{10}=\frac{1}{2}$,解得a=2.
∴z=$\frac{1}{2}-\frac{1}{2}i$.
∴復(fù)數(shù)z的虛部為-$\frac{1}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.A${\;}_{5}^{2}$-C${\;}_{5}^{3}$等于( 。
A.0B.-10C.10D.-40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,內(nèi)角A,B,C的對(duì)邊為a,b,c,已知c=5,B=$\frac{2π}{3}$,△ABC的面積為$\frac{15\sqrt{3}}{4}$,則cos2A=$\frac{71}{98}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在區(qū)間[0,2]上隨機(jī)取兩個(gè)數(shù)x,y,則xy∈[0,2]的概率是( 。
A.$\frac{1-ln2}{2}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1+2ln2}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知定義在R上的函數(shù)f(x)滿足條件f(x+4)=-f(x),且函數(shù)y=f(x+2)是偶函數(shù),當(dāng)x∈(0,2]時(shí),$f(x)=lnx-ax({a>\frac{1}{2}})$,當(dāng)x∈[-2,0)時(shí),f(x)的最小值為3,則a的值等于(  )
A.e2B.eC.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)={e^x}-ax-1-\frac{x^2}{2},x∈R$.
(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意x≥0都有f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$是互相垂直的兩個(gè)單位向量,且|$\overrightarrow{a}$-3$\overrightarrow$|=m|$\overrightarrow{a}$+$\overrightarrow$|,則實(shí)數(shù)m的值為(  )
A.$\sqrt{10}$B.±$\sqrt{10}$C.$\sqrt{5}$D.±$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知射線OP:y=$\frac{4}{3}$x(x≥0)和矩形ABCD,AB=16,AD=9,點(diǎn)A、B分別在射線OP和x軸非負(fù)半軸上,則線段OD長(zhǎng)度的最大值為( 。
A.$\sqrt{337}$B.27C.$\sqrt{689}$D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={1,2,3},$B=\left\{{x|\frac{2-x}{x}≥0}\right\}$,則A∩B=( 。
A.{0,1,2}B.{1,2}C.{2,3}D.{0,2,3}

查看答案和解析>>

同步練習(xí)冊(cè)答案