12.設(shè)矩陣A=$[\begin{array}{l}{m}&{0}\\{0}&{n}\end{array}]$,若矩陣A的屬于特征值1的一個(gè)特征向量為$[\begin{array}{l}{1}\\{0}\end{array}]$,屬于特征值2的一個(gè)特征向量為$[\begin{array}{l}{0}\\{1}\end{array}]$,求矩陣A.

分析 由矩陣A=$[\begin{array}{l}{m}&{0}\\{0}&{n}\end{array}]$,若矩陣A的屬于特征值1的一個(gè)特征向量為$[\begin{array}{l}{1}\\{0}\end{array}]$,屬于特征值2的一個(gè)特征向量為$[\begin{array}{l}{0}\\{1}\end{array}]$,列出矩陣方程組,求出m,n,由此能求出矩陣A.

解答 解:∵矩陣A=$[\begin{array}{l}{m}&{0}\\{0}&{n}\end{array}]$,矩陣A的屬于特征值1的一個(gè)特征向量為$[\begin{array}{l}{1}\\{0}\end{array}]$,
屬于特征值2的一個(gè)特征向量為$[\begin{array}{l}{0}\\{1}\end{array}]$,
∴$\left\{\begin{array}{l}{[\begin{array}{l}{m}&{0}\\{0}&{n}\end{array}][\begin{array}{l}{1}\\{0}\end{array}]=1•[\begin{array}{l}{1}\\{0}\end{array}]}\\{[\begin{array}{l}{m}&{0}\\{0}&{n}\end{array}][\begin{array}{l}{1}\\{0}\end{array}]=2•[\begin{array}{l}{0}\\{1}\end{array}]}\end{array}\right.$,即$\left\{\begin{array}{l}{[\begin{array}{l}{m}\\{0}\end{array}]=[\begin{array}{l}{1}\\{0}\end{array}]}\\{[\begin{array}{l}{0}\\{n}\end{array}]=[\begin{array}{l}{0}\\{2}\end{array}]}\end{array}\right.$,
解得m=1,n=2,
∴矩陣A=$[\begin{array}{l}{1}&{0}\\{0}&{2}\end{array}]$.

點(diǎn)評(píng) 本題考查矩陣的求法,考查矩陣方程、特征值、特征向量等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.為了了解高三年級(jí)學(xué)生是否選擇文科與性別的關(guān)系,現(xiàn)隨機(jī)抽取我校高三男生、女生各25人進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)后得到如下列聯(lián)表:
文科理科合計(jì)
女生20525
男生101525
合計(jì)302050
(1)用分層抽樣的方法在選擇文科的學(xué)生中抽取6人,其中女生抽取多少人?
(2)在上述抽取的6人中任選2人,求恰有一名男生的概率.
(3)計(jì)算出統(tǒng)計(jì)量K2,并判斷是否有95%的把握認(rèn)為“選擇文科與性別有關(guān)”?
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=axlnx+b,g(x)=x2+kx+3,曲線y=f(x)在(1,f(1))處的切線方程為y=x-1.
(1)若f(x)在(b,m)上有最小值,求m的取值范圍;
(2)當(dāng)x∈[$\frac{1}{e}$,e]時(shí),若關(guān)于x的不等式2f(x)+g(x)≥0有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=sin2(x-$\frac{π}{6}$)+cos2x-1,x∈R.
(Ⅰ)求f(x)最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間$[-\frac{π}{3},\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.三角形的面積$s=\frac{1}{2}(a+b+c)r$,a﹑b﹑c 為三邊的邊長(zhǎng),r為三角形內(nèi)切圓半徑,利用類比推理可以得到四面體的體積為(  )
A.V=$\frac{1}{3}$abc
B.$V=\frac{1}{3}sh$
C.$V=\frac{1}{3}(ab+bc+ca)h$
D.$V=\frac{1}{3}({s_1}+{s_2}+{s_3}+{s_4})r$(s1,s2,s3,s4分別為四個(gè)面的面積,r為四面體內(nèi)切球半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某數(shù)學(xué)研究性學(xué)習(xí)小組,在研究如下問(wèn)題:“某少數(shù)民族的刺繡有著悠久的歷史,如圖中(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形,求f(n).”
甲小組的方案是:先計(jì)算f(1),f(2),f(3),f(4),f(5);再計(jì)算f(2)-f(1),f(3)-f(2),f(4)-f(3),f(5)-f(4);進(jìn)而猜想f(n+1)-f(n)的關(guān)系式(不要證明);再利用累加法求得f(n);
乙小組的方案是:注意到該刺繡的圖案從左到右,各列中的小正方形圖案關(guān)于中間一列的小正方形圖案左右對(duì)稱,據(jù)此,從左到右,按各列的小正方形數(shù),先列出f(n)的求和的式子,再對(duì)之求和;現(xiàn)請(qǐng)你任選其中的一種方案,計(jì)算f(n).(注意:必須完成方案中的每一個(gè)步驟)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知(1-3x)n的展開(kāi)式中,末三項(xiàng)的二項(xiàng)式系數(shù)的和等于 121,求展開(kāi)式中系數(shù)最小的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)隨機(jī)變量X,Y滿足:Y=3X-1,X~B(2,p),若P(X≥1)=$\frac{5}{9}$,則D(Y)=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=x+2x,g(x)=x+lnx,$h(x)=x-\sqrt{x}-1$的零點(diǎn)分別為x1,x2,x3,則x1,x2,x3的大小關(guān)系是( 。
A.x2<x1<x3B.x1<x2<x3C.x1<x3<x2D.x2<x3<x1

查看答案和解析>>

同步練習(xí)冊(cè)答案