6.已知函數(shù)分別由下表給出:
x123
f(x)131
x123
g(x)321
若f(g(x))=3,求x的值.

分析 根據(jù)函數(shù)的對(duì)應(yīng)數(shù)值,先得出g(x)的值,再得出x的值.

解答 解:根據(jù)函數(shù)的對(duì)應(yīng)數(shù)值,由f(g(x))=3,
得g(x)=2,
∴x=2.

點(diǎn)評(píng) 本題考查了函數(shù)的定義與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且3bcosB=acosC+ccosA,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2.
(1)求cosB及△ABC的面積S;
(2)若b=3,且a>c,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,某幾何體的三視圖中,俯視圖是邊長(zhǎng)為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( 。
A.$\frac{{3\sqrt{3}}}{2}$B.$3\sqrt{3}$C.$\frac{{9\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知?jiǎng)訄AM經(jīng)過點(diǎn)A(-2,0),且與圓B:(x-2)2+y2=4相內(nèi)切(B為圓心).
(1)求動(dòng)圓的圓心M的軌跡C的方程;
(2)過點(diǎn)B且斜率為2的直線與軌跡C交于P,Q兩點(diǎn),求△APQ的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,已知$\sqrt{3}asinC-c({2+cosA})=0$,其中角A、B、C所對(duì)的邊分別為a、b、c.求
(1)求角A的大小;
(2)若△ABC的最大邊的邊長(zhǎng)為$\sqrt{13}$,且sinC=3sinB,求最小邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把邊長(zhǎng)為1的正方形ABCD沿對(duì)角線BD折起,形成的三棱錐A-BCD的正視圖和俯視圖如圖所示,則其幾何體的表面積為( 。
A.$\frac{2+\sqrt{2}}{2}$B.$\frac{2+\sqrt{3}}{2}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x+$\frac{a}{x}$+a2-2,a∈R
(Ⅰ)若f(x)是奇函數(shù),且在區(qū)間(0,+∞)上是增函數(shù),求a的值
(Ⅱ)設(shè)g(x)=f(1)-a2+|log8(x+1)|,若g(x)在區(qū)間(-1,1)內(nèi)有兩個(gè)不同的零點(diǎn)m,n,求a的取值范圍,并求$\frac{1}{m}$$+\frac{1}{n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1的一條漸近線過點(diǎn)(2,$\sqrt{21}$),則此雙曲線的離心率為(  )
A.2B.$\frac{5}{2}$C.$\frac{\sqrt{10}}{2}$D.$\frac{\sqrt{13}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)z滿足z=i(1-i),(i為虛數(shù)單位)則|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案