14.設(shè)函數(shù)$f(x)=\frac{f'(1)}{e}•{e^x}-f(0)x+\frac{1}{2}{x^2}$,則曲線f(x)在點(1,f(1))處切線方程為( 。
A.$y=\frac{1}{e}x-\frac{1}{2}$B.$y=ex-\frac{1}{2}$C.$y=-\frac{1}{e}x+\frac{1}{2}$D.$y=ex+\frac{1}{2}$

分析 求出f(x)的導(dǎo)數(shù),可令x=0,x=1,可得f(0)=1,f′(1)=e,求得切點,再由點斜式方程即可得到所求切線的方程.

解答 解:函數(shù)$f(x)=\frac{f'(1)}{e}•{e^x}-f(0)x+\frac{1}{2}{x^2}$,
導(dǎo)數(shù)為f′(x)=$\frac{f′(1)}{e}$•ex-f(0)+x,
令x=1可得f′(1)=f′(1)-f(0)+1,
解得f(0)=1,
可令x=0,則f(0)=$\frac{f′(1)}{e}$•e0=1,
可得f′(1)=e,
即有f′(x)=ex-1+x,
可得曲線f(x)在點(1,f(1))處切線斜率為e,
切點為(1,e-$\frac{1}{2}$),
即有切線的方程為y-e+$\frac{1}{2}$=e(x-1),
即為y=ex-$\frac{1}{2}$.
故選:B.

點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和賦值是解題的關(guān)鍵,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|x<3},$B=\left\{{x\left|{\frac{x-1}{x-4}≤0}\right.}\right\}$,則(∁RA)∩B=( 。
A.(1,3)B.(3,4)C.[1,3]D.[3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若復(fù)數(shù)z滿足z=i(2-z).
(1)求z;
(2)求|z-(2-i)|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系xoy中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求出圓C的直角坐標(biāo)方程;
(2)已知圓C與x軸相交于A,B兩點,若直線l:y=2x+2m上存在點P使得∠APB=90°,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在復(fù)平面內(nèi),復(fù)數(shù)4+5i,-2+i對應(yīng)的點分別為A,B,若C為線段AB的中點,則點C對應(yīng)的復(fù)數(shù)是(  )
A.2+6iB.1+3iC.6+4iD.3+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,AE=EB,點F在CE上,且BF⊥平面ACE;
(1)求證:AE⊥平面BCE;
(2)求二面角B-AC-E的正弦值;
(3)求點D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)x∈R,向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,-2)$,且$\overrightarrow a⊥\overrightarrow b$,則$\overrightarrow a$在$\overrightarrow a+\overrightarrow b$上的投影為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an},a1=0,an=an+1+$\frac{{a}_{n}+1}{2}$.
(1)證明數(shù)列{an+1}是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)令bn=nan+n,數(shù)列{bn}的前n項和為Sn,求證:Sn≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列圓的方程
(1)求過三點O(0,0),A(1,1),B(4,2)的圓的一般方程
(2)求圓心在直線y=-4x上,且與直線x+y-1=0相切于點P(3,-2)的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案