20.設(shè)向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(cosx,cosx),x∈R,函數(shù)f(x)=$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$).則使不等式f(x)≥$\frac{3}{2}$成立的x的取值集合為{x|kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,k∈Z}.

分析 根據(jù)平面向量的坐標(biāo)運(yùn)算與數(shù)量積運(yùn)算,利用三角恒等變換化簡(jiǎn)f(x),求出不等式的解集即可.

解答 解:∵向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(cosx,cosx),x∈R,
∴$\overrightarrow{a}$+$\overrightarrow$=(sinx+cosx,2cosx),
∴函數(shù)f(x)=$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)
=sinx•(sinx+cosx)+2cos2x
=sin2x+sinxcosx+2cos2x
=sinxcosx+cos2x+1
=$\frac{1}{2}$sin2x+$\frac{1+cos2x}{2}$+1
=$\frac{\sqrt{2}}{2}$($\frac{\sqrt{2}}{2}$sin2x+$\frac{\sqrt{2}}{2}$cos2x)+$\frac{3}{2}$
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{3}{2}$;
令f(x)≥$\frac{3}{2}$,
得sin(2x+$\frac{π}{4}$)≥0,
∴2kπ≤2x+$\frac{π}{4}$≤2kπ+π,k∈Z,
解得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,k∈Z,
所求x的取值集合為{x|kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,k∈Z}.
故答案為:{x|kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,k∈Z}.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積與坐標(biāo)運(yùn)算問題,也考查三角函數(shù)的恒等變換以及正弦函數(shù)的圖象和性質(zhì)與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.圓x2+y2-4x=0的圓心坐標(biāo)和半徑分別(2,0),2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$f(x)=\left\{\begin{array}{l}3{e^{x-1}},x<3\\{x^3},x≥3\end{array}\right.$,則f(f(1))的值等于27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2sin(2x-$\frac{π}{3}$).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)的最大值及取得最大值時(shí)相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,|$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{5}$,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知樣本數(shù)為11,計(jì)算得$\sum_{i=1}^{11}{x_i}=66$,$\sum_{i=1}^{11}{y_i}=132$,回歸方程為y=0.3x+a,則a=10.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1上一點(diǎn)P到左焦點(diǎn)F1的距離為10,則當(dāng)PF1的中點(diǎn)N到坐標(biāo)原點(diǎn)O的距離為(  )
A.3或7B.6或14C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$cos2x+sin2(x+$\frac{π}{4}}$).
(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}}$)時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若關(guān)于x的方程(1-m)x2+2mx-1=0的所有根都是正實(shí)數(shù),則實(shí)數(shù)m的取值范圍是m≥1.

查看答案和解析>>

同步練習(xí)冊(cè)答案