20.已知z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,則“m=1”是“z1=z2”的( 。l件.
A.充分不必要B.必要不充分C.充要D.非充分非必要

分析 根據(jù)復(fù)數(shù)相等的條件,利用充分條件和必要條件的定義進(jìn)行判斷.

解答 解:當(dāng)m=1,則z1=(m2+m+1)+(m2+m-4)i=3-2i,此時z1=z2,充分性成立.
若z1=z2,則$\left\{\begin{array}{l}{{m}^{2}+m+1=3}\\{{m}^{2}+m-4=-2}\end{array}\right.$,
解得m=-2或m=1,顯然m=1是z1=z2的充分不必要條件.
故m=1是z1=z2的充分不必要條件.
故選:A.

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,利用復(fù)數(shù)相等的等價條件是解決本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖程序框圖的算法思路源于數(shù)學(xué)名著《幾何原本》中的“輾轉(zhuǎn)相除法”.若輸入的m,n分別為385,105,執(zhí)行該程序框圖(圖中“mMODn”表示m除以n的余數(shù),例:11MOD7=4),則輸出的m等于(  )
A.0B.15C.35D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若α為銳角,3sinα=tanα=$\sqrt{2}$tanβ,則tan2β等于( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.給出下列命題:
①已知ξ服從正態(tài)分布N(0,δ2),且P(-2≤ξ≤2)=0.4,則P(ξ>2)=0.3;
②函數(shù)f(x-1)是偶函數(shù),且在(0,+∞)上單調(diào)遞增,則f(2${\;}^{\frac{1}{8}}$)>f(log2$\frac{1}{8}$)>f[($\frac{1}{8}$)2]
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}$=-3,
其中正確命題的序號是①②(把你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是將二進(jìn)制111111(2)化成十進(jìn)制數(shù)的一個程序框圖,判斷框內(nèi)應(yīng)填入的條件是( 。
A.i≤6B.i>6C.i≤5D.i>5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F,過點(diǎn)F作x軸的垂線交兩漸近線于點(diǎn)A,B兩點(diǎn),且與雙曲線在第一象限的交點(diǎn)為P,設(shè)O為坐標(biāo)原點(diǎn),若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+u$\overrightarrow{OB}$(λ,μ∈R),λ2+u2=$\frac{5}{8}$,則雙曲線的離心率為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知直線ax+by-6=0(a>0,b>0)被圓x2+y2-2x-4y=0截得的弦長為2$\sqrt{5}$,則ab的最大值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若曲線C:$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$與直線ρcosθ+2ρsinθ=2交于A、B兩點(diǎn)
①求曲線C與直線在平面直角坐標(biāo)系中的方程;
②求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示,它的體積為( 。
A.πB.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

查看答案和解析>>

同步練習(xí)冊答案