分析 由圓的方程得到圓的半徑為$\sqrt{5}$,再由弦長為2$\sqrt{5}$得到直線過圓心,即得到a與b滿足的關(guān)系式,再利用基本不等式即可得到結(jié)論.
解答 解:圓x2+y2-2x-4y=0可化為(x-1)2+(y-2)2=5,則圓心為(1,2),半徑為$\sqrt{5}$,
又由直線ax+by-6=0(a>0,b>0)被圓x2+y2-2x-4y=0截得的弦長為2$\sqrt{5}$,
則直線ax+by-6=0(a>0,b>0)過圓心,即a+2b-6=0,亦即a+2b=6,a>0,b>0,
所以6=a+2b≥2$\sqrt{2ab}$,當(dāng)且僅當(dāng)a=2b時取等號,
所以ab≤$\frac{9}{2}$,所以ab的最大值為$\frac{9}{2}$,
故答案為:$\frac{9}{2}$.
點評 本題考查的知識點是直線與圓相交的性質(zhì),基本不等式,其中根據(jù)已知條件,分析出圓心在已知直線上,進而得到a,b的關(guān)系式,是解答本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | C. | 充要 | D. | 非充分非必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\frac{9}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 117級 | B. | 112級 | C. | 118級 | D. | 110級 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com