分析 (Ⅰ)在△ABD中,由已知利用正弦定理即可計算得解BD的值.
(Ⅱ)由已知利用正弦定理可求AD的值,在△ACD中,由余弦定理可求AC的值,進而利用三角形面積公式即可計算得解.
解答 (本題滿分為12分)
解:(Ⅰ)在△ABD中,由,BD=$\frac{ABsin∠BAD}{sin∠ADB}$=$\frac{3\sqrt{6}sin\frac{7π}{12}}{sin\frac{π}{3}}$,
∴BD=3$\sqrt{3}+3$. …(4分)
(Ⅱ)AD=$\frac{ABsinB}{sin∠ADB}$=$\frac{3\sqrt{6}sin\frac{π}{4}}{sin\frac{π}{3}}$,
∴AD=6,
在△ACD中,由余弦定理得:AC=$\sqrt{A{D}^{2}+C{D}^{2}-2AD•CD•cos∠ADC}$=14. …(8分)
∴S△ACD=$\frac{1}{2}$AD•DC•sin∠ADC=$\frac{1}{2}×6×10×\frac{\sqrt{3}}{2}$=15$\sqrt{3}$. …(12分)
點評 本題主要考查了正弦定理,余弦定理,三角形面積公式在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù)且圖象關于點$({\frac{π}{2},0})$對稱 | B. | 偶函數(shù)且圖象關于點(π,0)對稱 | ||
C. | 奇函數(shù)且圖象關于直線$x=\frac{π}{2}$對稱 | D. | 偶函數(shù)且圖象關于點$({\frac{π}{2},0})$對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4\sqrt{2}}{3}$ | B. | $\frac{2\sqrt{2}}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{\sqrt{2}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{7}}{2}$ | C. | $\frac{\sqrt{15}}{3}$ | D. | $\frac{\sqrt{17}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com