6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x<0}\\{\frac{lnx}{x},x>0}\end{array}\right.$,若函數(shù)F(x)=f(x)-kx在R上有3個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍為( 。
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{2e}$)C.(-∞,$\frac{1}{2e}$)D.($\frac{1}{2e}$,$\frac{1}{e}$)

分析 函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x<0}\\{\frac{lnx}{x},x>0}\end{array}\right.$,若函數(shù)F(x)=f(x)-kx在R上有3個(gè)零點(diǎn),當(dāng)x>0時(shí),令f(x)=0,有兩個(gè)實(shí)數(shù)解.可得k=$\frac{lnx}{{x}^{2}}$即直線y=k和g(x)=$\frac{lnx}{{x}^{2}}$有兩個(gè)交點(diǎn).x<0時(shí)有一個(gè)交點(diǎn),求出g(x)的導(dǎo)數(shù)和單調(diào)區(qū)間,可得最值和端點(diǎn)處的函數(shù)值,即可得到所求k的范圍.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x<0}\\{\frac{lnx}{x},x>0}\end{array}\right.$,若函數(shù)F(x)=f(x)-kx在R上有3個(gè)零點(diǎn),當(dāng)x>0時(shí),令f(x)=0,有兩個(gè)實(shí)數(shù)解.可得k=$\frac{lnx}{{x}^{2}}$即直線y=k和g(x)=$\frac{lnx}{{x}^{2}}$有兩個(gè)交點(diǎn).
由g′(x)=$\frac{1-2lnx}{{x}^{3}}$,令1-2lnx=0,可得x=$\sqrt{e}$,可得g(x)在(0,$\sqrt{e}$),函數(shù)是增函數(shù),
在($\sqrt{e}$,+∞)遞減,
即有g(shù)(x)在x=$\sqrt{e}$取得最大值$\frac{1}{2e}$;
直線y=k和函數(shù)g(x)的圖象有兩個(gè)交點(diǎn).k∈(0,$\frac{1}{2e}$),
函數(shù)F(x)=f(x)-kx在R上有3個(gè)零點(diǎn),x<0時(shí)y=k和g(x)=$\frac{1}{x}$有一個(gè)交點(diǎn),k∈(0,$\frac{1}{2e}$),
顯然成立.
實(shí)數(shù)k的取值范圍為(0,$\frac{1}{2e}$).
故選:B.

點(diǎn)評 本題考查函數(shù)的零點(diǎn)問題的解法,注意運(yùn)用轉(zhuǎn)化思想,構(gòu)造函數(shù)法和導(dǎo)數(shù)求得單調(diào)區(qū)間、最值,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆山東濰坊臨朐縣高三10月月考數(shù)學(xué)(理)試卷(解析版) 題型:解答題

某企業(yè)共有20條生產(chǎn)線,由于受生產(chǎn)能力和技術(shù)水平等因素的影響,會(huì)產(chǎn)生一定量的次品.根據(jù)經(jīng)驗(yàn)知道,每臺機(jī)器產(chǎn)生的次品數(shù)萬件與每臺機(jī)器的日產(chǎn)量萬件之間滿足關(guān)系:.已知每生產(chǎn)1萬件合格的產(chǎn)品可以以盈利3萬元,但每生產(chǎn)1萬件次品將虧損1萬元.

(Ⅰ)試將該企業(yè)每天生產(chǎn)這種產(chǎn)品所獲得的利潤表示為的函數(shù);

(Ⅱ)當(dāng)每臺機(jī)器的日產(chǎn)量為多少時(shí),該企業(yè)的利潤最大,最大為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知曲線,)在處的切線與直線平行.

(1)討論的單調(diào)性;

(2)若,上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

一個(gè)空間幾何體的三視圖如圖所示,其中正視圖為等腰直角三角形,側(cè)視圖與俯視圖為正方形,則該幾何體的體積為( )

A.64 B.32

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=ex(sinx+acosx)在($\frac{π}{4}$,$\frac{π}{2}$)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓$\frac{x^2}{m}+\frac{y^2}{n}=1$過點(diǎn)P(1,2),則m+n的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)g(x)=a(2x-1),h(x)=(2a2+1)1nx,其中a∈R.
(Ⅰ)若直線x=2與曲線y=g(x)分別交于A、B兩點(diǎn),且曲線y=g(x)在點(diǎn)A處的切線與曲線y=h(x)在點(diǎn)B處的切線相互平行,求a的值;
(Ⅱ)令f(x)=g(x)+h(x),若f(x)在[$\frac{1}{2}$,1]上沒有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=lnx-2x+6,則f(x)零點(diǎn)的個(gè)數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出下列結(jié)論:
動(dòng)點(diǎn)M(x,y)分別到兩定點(diǎn)(-4,0),(4,0)連線的斜率之乘積為-$\frac{9}{16}$,設(shè)M(x,y)的軌跡為曲線C,F(xiàn)1、F2分別為曲線C的左右焦點(diǎn),則下列命題中:
(1)曲線C的焦點(diǎn)坐標(biāo)為F1(-5,0),F(xiàn)2(5,0);
(2)曲線C上存在一點(diǎn)M,使得S△F1MF2=9;
(3)P為曲線C上一點(diǎn),P,F(xiàn)1,F(xiàn)2是直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值為$\frac{23}{9}$;
(4)設(shè)A(1,1),動(dòng)點(diǎn)P在曲線C上,則|PA|+|PF1|的最大值為8+$\sqrt{9-2\sqrt{7}}$;
其中正確命題的序號是③④.

查看答案和解析>>

同步練習(xí)冊答案