8.在△ABC中,G點(diǎn)為△ABC的重心,a,b,c分別為角A,B,C的對邊,若b2+c2+bc=a2,且S△ABC=2$\sqrt{3}$,則|AG|的最小值為$\frac{2\sqrt{2}}{3}$.

分析 b2+c2+bc=a2,可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$-\frac{1}{2}$,A∈(0,π),可得A.利用S△ABC=2$\sqrt{3}$=$\frac{1}{2}bc$sinA,可得bc.設(shè)D為BC的中點(diǎn).由余弦定理可得:(2AD)2+a2=2(b2+c2),利用基本不等式的性質(zhì)可得:4AD2=b2+c2-bc≥bc=8,再利用AG=2GD即可得出.

解答 解:b2+c2+bc=a2,∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$-\frac{1}{2}$,A∈(0,π),可得A=$\frac{2π}{3}$.
∵S△ABC=2$\sqrt{3}$=$\frac{1}{2}bc$sinA,∴bc=8.①
設(shè)D為BC的中點(diǎn).
由余弦定理可得:(2AD)2+a2=2(b2+c2)②,
∴由①②可得:4AD2=b2+c2-bc≥bc=8,
∴AD的最小值是$\sqrt{2}$,
∵點(diǎn)G為△ABC的重心,AG=2GD.
∴AG的最小值為$\frac{2\sqrt{2}}{3}$.
故答案為:$\frac{2\sqrt{2}}{3}$.

點(diǎn)評 本題考查了三角形重心性質(zhì)、余弦定理、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知兩個單位向量$\overrightarrow i,\overrightarrow j$互相垂直,且向量$\overrightarrow k=5\overrightarrow i+3\overrightarrow j$,則|$\overrightarrow{k}$-$\overrightarrow{i}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,點(diǎn)A(-2,0),B(2,0)分別為橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右頂點(diǎn),P,M,N為橢圓C上非頂點(diǎn)的三點(diǎn),直線AP,BP的斜率分別為k1,k2,且${k_1}{k_2}=-\frac{1}{4}$,AP∥OM,BP∥ON.
(1)求橢圓C的方程;
(2)判斷△OMN的面積是否為定值?若為定值,求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2-[x]•|x-1|,(0≤x<2)}\\{1,(x=2)}\end{array}\right.$,其中[x]表示不超過x的最大整數(shù).設(shè)n∈N*,定義函數(shù)fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2),則下列說法正確的有(  )個
①$y=\sqrt{x-f(x)}$的定義域?yàn)?[{\frac{2}{3},2}]$;
②設(shè)A={0,1,2},B={x|f3(x)=x,x∈A},則A=B;
③${f_{2016}}({\frac{8}{9}})+{f_{2017}}({\frac{8}{9}})=\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},則M中至少含有8個元素.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等比數(shù)列{an}中,S6=120,a1+a3+a5=30,則q=(  )
A.2B.3C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.不等式組$\left\{\begin{array}{l}y-1≥0\\ x-y+2≥0\\ x+4y-8≤0\end{array}\right.$表示的平面區(qū)域?yàn)棣,直線x=a(a>1)將Ω分成面積之比為1:4的兩部分,則目標(biāo)函數(shù)z=ax+y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.當(dāng)a=16時,如圖的算法輸出的結(jié)果是( 。
A.9B.32C.10D.256

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.有一段“三段論”推理是這樣的“對于可導(dǎo)函數(shù)f(x),如果f'(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn);因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f'(x0)=0,所以x=0是函數(shù)f(x)=x3的極值點(diǎn).”以上推理中:(1)大前提錯誤;(2)小前提錯誤;(3)推理形式正確;(4)結(jié)論正確.你認(rèn)為正確的序號是( 。
A.(1)(3)B.(2)(3)C.(1)(4)D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.△ABC中,D為AB的中點(diǎn),點(diǎn)F在線段CD(不含端點(diǎn))上,且滿足$\overrightarrow{AF}=x\overrightarrow{AB}+y\overrightarrow{AC}$(x,y∈R),則$\frac{1}{x}+\frac{2}{y}$的最小值為( 。
A.$3+2\sqrt{2}$B.$2+2\sqrt{2}$C.6D.8

查看答案和解析>>

同步練習(xí)冊答案