10.若x,y滿足約束條件$\left\{\begin{array}{l}{-1≤x-y≤1}\\{2≤x+2y≤3}\end{array}\right.$,則z=2x+y的最大值為(  )
A.2B.3C.4D.5

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{-1≤x-y≤1}\\{2≤x+2y≤3}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y=1}\\{x+2y=3}\end{array}\right.$,解得A($\frac{5}{3},\frac{2}{3}$),
化目標(biāo)函數(shù)z=2x+y為y=-2x+z,
由圖可知,當(dāng)直線y=-2x+z過點A時,直線在y軸上的截距最大,z有最大值為4.
故選:C.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,半徑為1的半圓O上有一動點B,MN為直徑,A為半徑ON延長線上的一點,且OA=2,∠AOB的角平分線交半圓于點C.
(1)若$\overrightarrow{AC}•\overrightarrow{AB}=3$,求cos∠AOC的值;
(2)若A,B,C三點共線,求線段AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC,acosA,ccosB成等差數(shù)列.
(1)求角A的大;
(2)若$a=3\sqrt{2}$,b+c=6,求$|{\overrightarrow{AB}+\overrightarrow{AC}}|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若${({4x-\frac{1}{{\root{3}{x}}}})^n}$的展開式中各項的系數(shù)之和為729,則該展開式中x2的系數(shù)為-1280.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中,錯誤的是( 。
A.?x∈(0,$\frac{π}{2}$),x>sinx
B.在△ABC中,若A>B,則sinA>sinB
C.函數(shù)f(x)=tanx圖象的一個對稱中心是($\frac{π}{2}$,0)
D.?x0∈R,sinx0cosx0=$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知△ABC,AB=$\sqrt{2},AC=4,∠BAC={45°}$,則△ABC外接圓的直徑為2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)復(fù)數(shù)z與$\frac{1+3i}{1-i}$在復(fù)平面內(nèi)對應(yīng)的點關(guān)于實軸對稱,則z等于(  )
A.-1+2iB.1+2iC.1-2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在一次水稻試驗田驗收活動中,將甲、乙兩種水稻隨機(jī)抽取各6株樣品,單株籽粒數(shù)制成如圖所示的莖葉圖:
(1)一粒水稻約為0.1克,每畝水稻約為6萬株,估計甲種水稻畝產(chǎn)約為多少公斤?
(2)如從甲品種的6株中任選2株,記選到超過187粒的株數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.?dāng)?shù)列{an}的前n項和是Sn,a1=1,2Sn=an+1(n∈N+),則an=$\left\{\begin{array}{l}{1,n=1}\\{2{•3}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案