17.下列說法中,正確的有④⑤.(寫出所有正確說法的序號)
①已知關(guān)于x的不等式mx2+mx+2>0的角集為R,則實(shí)數(shù)m的取值范圍是0<m<4.
②已知等比數(shù)列{an}的前n項(xiàng)和為Sn,則Sn、S2n-Sn、S3n-S2n也構(gòu)成等比數(shù)列.
③已知函數(shù)$f(x)=\left\{\begin{array}{l}1+{log_a}({x+1}),x≥0\\{x^2}+({4a-3})x+3a,x<0\end{array}\right.$(其中a>0且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程$|{f(x)}|=2-\frac{x}{3}$恰有兩個(gè)不相等的實(shí)數(shù)解,則$\frac{1}{3}≤x≤\frac{3}{4}$.
④已知a>0,b>-1,且a+b=1,則$\frac{{a}^{2}+2}{a}$+$\frac{^{2}}{b+1}$的最小值為$\frac{{3+2\sqrt{2}}}{2}$.
⑤在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=|$\overrightarrow{OD}$|=1,$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=$\overrightarrow{0}$,A(1,1),則$\overrightarrow{AD}•\overrightarrow{OB}$的取值范圍是$[{-\frac{1}{2}-\sqrt{2},-\frac{1}{2}+\sqrt{2}}]$.

分析 求出m的范圍判斷①;舉例說明②錯(cuò)誤;由減函數(shù)可知f(x)在兩段上均為減函數(shù),且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2-$\frac{x}{3}$的圖象,根據(jù)交點(diǎn)個(gè)數(shù)判斷3a與2的大小關(guān)系,列出不等式組解出x的范圍判斷③;由a>0,b>-1,且a+b=1,變形可得$\frac{{a}^{2}+2}{a}$+$\frac{^{2}}{b+1}$=$\frac{2}{a}+a$+b-1+$\frac{1}{b+1}$=$\frac{2}{a}+\frac{1}{2-a}$=f(a),0<a<2.利用導(dǎo)數(shù)求其最值判斷④;由三角形的外心和重心的概念,可得O既是外心也為重心,則有△BCD為圓O:x2+y2=1的內(nèi)接等邊三角形,又$\overrightarrow{AD}•\overrightarrow{OB}$=($\overrightarrow{OD}-\overrightarrow{OA}$)•$\overrightarrow{OB}$,由向量的數(shù)量積的定義和余弦函數(shù)的值域,即可得到所求范圍判斷⑤.

解答 解:①當(dāng)m=0時(shí),關(guān)于x的不等式mx2+mx+2>0的解集為R,當(dāng)m≠0時(shí),
要使不等式mx2+mx+2>0的解集為R,則$\left\{\begin{array}{l}{m>0}\\{{m}^{2}-8m<0}\end{array}\right.$,解得0<m<8,綜上,m的范圍為0≤m<8,∴①錯(cuò)誤;
②等比數(shù)列{an}的前n項(xiàng)和為Sn,則Sn、S2n-Sn、S3n-S2n也構(gòu)成等比數(shù)列錯(cuò)誤,如1,-1,1,-1,1,-1的前兩項(xiàng)和、中兩項(xiàng)和及后兩項(xiàng)和,組成的數(shù)列為0,0,0.顯然不是等比數(shù)列;
∵f(x)是R上的單調(diào)遞減函數(shù),
∴y=x2+(4a-3)x+3a在(-∞,0)上單調(diào)遞減,
y=loga(x+1)+1在(0,+∞)上單調(diào)遞減,
且f(x)在(-∞,0)上的最小值大于或等于f(0).
∴$\left\{\begin{array}{l}{\frac{3-4a}{2}≥0}\\{0<a<1}\\{3a≥1}\end{array}\right.$,解得$\frac{1}{3}$≤a≤$\frac{3}{4}$.
作出y=|f(x)|和y=2-$\frac{x}{3}$的函數(shù)草圖如圖所示:
∵|f(x)|=2-$\frac{x}{3}$恰有兩個(gè)不相等的實(shí)數(shù)解,
∴3a<2,即a<$\frac{2}{3}$.
綜上,$\frac{1}{3}$≤a<$\frac{2}{3}$,故③錯(cuò)誤;
④∵a>0,b>-1,且a+b=1,∴$\frac{{a}^{2}+2}{a}$+$\frac{^{2}}{b+1}$=$a+\frac{2}{a}+b-1+\frac{1}{b+1}$=$\frac{2}{a}+\frac{1}{2-a}$=f(a),0<a<2.
令f′(a)=$-\frac{2}{{a}^{2}}+\frac{1}{(2-a)^{2}}=\frac{-({a}^{2}-8a+8)}{{a}^{2}(2-a)^{2}}$>0,解得4-2$\sqrt{2}$<a<2,此時(shí)函數(shù)f(a)單調(diào)遞增;令f′(a)<0,解得0<a<4-2$\sqrt{2}$,此時(shí)函數(shù)f(a)單調(diào)遞減.
∴當(dāng)且僅當(dāng)a=4-2$\sqrt{2}$時(shí),函數(shù)f(a)取得極小值即最小值,f(4-2$\sqrt{2}$)=$\frac{3+2\sqrt{2}}{2}$,故④正確;
⑤由|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=|$\overrightarrow{OD}$|=1,可知O為外心,由$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=$\overrightarrow{0}$,可知O又為重心.
則有△BCD為圓O:x2+y2=1的內(nèi)接等邊三角形,
即有$\overrightarrow{AD}•\overrightarrow{OB}$=($\overrightarrow{OD}-\overrightarrow{OA}$)•$\overrightarrow{OB}$=$\overrightarrow{OB}•\overrightarrow{OD}$-$\overrightarrow{OA}•\overrightarrow{OB}$=|$\overrightarrow{OD}$|•|$\overrightarrow{OB}$|cos120°-|$\overrightarrow{OA}$|•|$\overrightarrow{OB}$|cos<$\overrightarrow{OA},\overrightarrow{OB}$>
=-$\frac{1}{2}$-$\sqrt{2}$cos<$\overrightarrow{OA},\overrightarrow{OB}$>,由于0≤<$\overrightarrow{OA},\overrightarrow{OB}$>≤π,
則-1≤cos<$\overrightarrow{OA},\overrightarrow{OB}$>≤1,
即有$\overrightarrow{AD}•\overrightarrow{OB}$∈$[{-\frac{1}{2}-\sqrt{2},-\frac{1}{2}+\sqrt{2}}]$,故⑤正確.
∴正確命題是④⑤.
故答案為:④⑤.

點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,考查恒成立問題的求解方法,訓(xùn)練了利用導(dǎo)數(shù)求函數(shù)的最值,考查平面向量的應(yīng)用,綜合性強(qiáng),是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sin θ、cos θ是關(guān)于x的方程x2-ax+a=0的兩個(gè)根(a∈R).
(1)求sin3θ+cos3θ的值;
(2)求tan θ+$\frac{1}{tanθ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-3\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))和圓x2+y2=16交于A,B兩點(diǎn),則線段AB的中點(diǎn)坐標(biāo)為( 。
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.$(3,-\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{2lnx+{a}^{2}}{x}$+bx-2a(a∈R),其中b=${∫}_{0}^{\frac{π}{2}}$(2sin$\frac{t}{2}$•cos$\frac{t}{2}$)dt,若?x∈(1,2),使得f′(x)•x+f(x)>0成立,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,1)B.(0,1]C.(-∞,$\frac{5}{2}$)D.(-∞,$\frac{5}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.甲船在點(diǎn)A處測得乙船在北偏東60°的B處,并以每小時(shí)10海里的速度向正北方向行使,若甲船沿北偏東30°角方向直線航行,并1小時(shí)后與乙船在C處相遇,則甲船的航速為10$\sqrt{3}$海里/小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)x1=4,x2=5,x3=6,則該樣本的標(biāo)準(zhǔn)差為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若圓的參數(shù)方程為x=-1+2cost,y=3+2sint(t為參數(shù)),直線的參數(shù)方程為x=2m-1,y=6m-1(m為參數(shù)),則直線與圓的位置關(guān)系是( 。
A.過圓心B.相交而不過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若實(shí)數(shù)x,y在條件$\left\{\begin{array}{l}x+y≤4\\ x≥1\\ y≥m\end{array}\right.$下,所表示的平面區(qū)域面積為2,則$\frac{x+y+2}{x+1}$的最小值為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,將邊長為2的正△ABC沿著高AD折起,使∠BDC=60°,若折起后A、B、C、D四點(diǎn)都在球O的表面上,則球O的表面積為( 。
A.$\frac{13}{2}π$B.$\frac{13}{3}π$C.$\frac{{13\sqrt{3}}}{2}π$D.$\frac{{13\sqrt{3}}}{3}π$

查看答案和解析>>

同步練習(xí)冊答案