2.設x1=4,x2=5,x3=6,則該樣本的標準差為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{7}}{3}$

分析 求出平均數(shù),求出樣本的方差,從而求出標準差即可.

解答 解:該樣本的平均數(shù)是5,
故方差是s2=$\frac{1}{3}$(1+0+1)=$\frac{2}{3}$,
故標準差s=$\sqrt{\frac{2}{3}}$=$\frac{\sqrt{6}}{3}$,
故選:B.

點評 本題考查了求樣本的平均數(shù)和標準差問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.求下列各函數(shù)的導數(shù):
(1)y=2x;         
(2)$y=x\sqrt{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知O、A、B是平面上的三個點,直線AB上有一個點C,滿足$2\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow 0$,則$\overrightarrow{OC}$=( 。
A.$-\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}$B.$\frac{2}{3}\overrightarrow{OA}-\frac{1}{3}\overrightarrow{OB}$C.$-\overrightarrow{OA}+2\overrightarrow{OB}$D.$2\overrightarrow{OA}-\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.用秦九韶算法求多項式f(x)=x6-8x5+60x4+16x3+96x2+240x+64在x=2時,v2的值為48.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.下列說法中,正確的有④⑤.(寫出所有正確說法的序號)
①已知關于x的不等式mx2+mx+2>0的角集為R,則實數(shù)m的取值范圍是0<m<4.
②已知等比數(shù)列{an}的前n項和為Sn,則Sn、S2n-Sn、S3n-S2n也構成等比數(shù)列.
③已知函數(shù)$f(x)=\left\{\begin{array}{l}1+{log_a}({x+1}),x≥0\\{x^2}+({4a-3})x+3a,x<0\end{array}\right.$(其中a>0且a≠1)在R上單調遞減,且關于x的方程$|{f(x)}|=2-\frac{x}{3}$恰有兩個不相等的實數(shù)解,則$\frac{1}{3}≤x≤\frac{3}{4}$.
④已知a>0,b>-1,且a+b=1,則$\frac{{a}^{2}+2}{a}$+$\frac{^{2}}{b+1}$的最小值為$\frac{{3+2\sqrt{2}}}{2}$.
⑤在平面直角坐標系中,O為坐標原點,|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=|$\overrightarrow{OD}$|=1,$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=$\overrightarrow{0}$,A(1,1),則$\overrightarrow{AD}•\overrightarrow{OB}$的取值范圍是$[{-\frac{1}{2}-\sqrt{2},-\frac{1}{2}+\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設X是一個離散型隨機變量,則下列不能成為X的概率分布列的一組數(shù)據(jù)是( 。
A.0,$\frac{1}{2}$,0,0,$\frac{1}{2}$B.0.1,0.2,0.3,0.4
C.p,1-p(0≤p≤1)D.$\frac{1}{1×2}$,$\frac{1}{2×3}$,…,$\frac{1}{7×8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.甲乙丙丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程fi(x)(i=1,2,3,4)關于時間x(x≥0)的函數(shù)關系式分別為${f_1}(x)={2^x}-1,{f_2}(x)={x^3},{f_3}(x)=x,{f_4}(x)={log_2}(x+1)$,
有以下結論:
①當x>1時,甲在最前面;
②當x>1時,乙在最前面;
③當0<x<1時,丁在最前面,當x>1時,丁在最后面;
④丙不可能在最前面,也不可能最最后面;
⑤如果它們已知運動下去,最終在最前面的是甲.
其中,正確結論的序號為③④⑤(把正確結論的序號都填上,多填或少填均不得分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知α,β是兩個不同的平面,m,n是兩條不同的直線,有下列命題:
①若m,n平行于同一平面,則m與n平行;
②若m⊥α,n∥α,則m⊥n;
③若α,β不平行,則在α內不存在與β平行的直線;
④若α∩β=n,m∥n,則m∥α且m∥β;
⑤若m∥n,α∥β,則m與α所成角等于n與β所成角.
其中真命題有②⑤.(填寫所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)$f(x)=sinx•sin({x+\frac{π}{6}})$.
(1)求f(x)的單調遞增區(qū)間;
(2)在銳角△ABC中,內角A,B,C所對的邊分別是a、b、c,且$f(A)=\frac{{\sqrt{3}}}{4},a=2$,求△ABC的最大面積.

查看答案和解析>>

同步練習冊答案