6.如圖,三棱錐S-ABC中,若$AC=2\sqrt{3}$,SA=SB=SC=AB=BC=4,E為棱SC的中點,則直線AC與BE所成角的余弦值為$\frac{1}{4}$,直線AC與平面SAB所成的角為600

分析 (1)取SA的中點F,連接EF,BF,則∠BEF(或其補(bǔ)角)為異面直線AC與BE所成的角,求出三角形的三邊,即可求出異面直線AC與BE所成的角.
(2)取SB中點O,連結(jié)CO,AO.可得AO⊥SB,CO⊥SB,即SB⊥面ACO,
即OAC是直線AC與平面SAB所成的角,可得∠OAC.

解答 解:(1)取SA的中點F,連接EF,BF,∵E為棱SC的中點,∴EF∥AC,
∴∠BEF(或其補(bǔ)角)為異面直線AC與BE所成的角,
∵AC=2$\sqrt{3}$,SA=SB=AB=BC=SC=4,∴BE=BF=2$\sqrt{3}$.EF=$\sqrt{3}$,
在等腰△BEF中,cos∠BEF=$\frac{\frac{\sqrt{3}}{2}}{2\sqrt{3}}=\frac{1}{4}$.
(2)取SB中點O,連結(jié)CO,AO.
∵SA=SB=SC=AB=BC=4,∴AO=CO=AC=2$\sqrt{3}$.
AO⊥SB,CO⊥SB,即SB⊥面ACO,
∴∠OAC是直線AC與平面SAB所成的角,可得∠OAC=60°.
故答案為:$\frac{1}{4}$,600

點評 本題考查異面直線及其所成的角,考查學(xué)生的計算能力,正確作出異面直線及其所成的角是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知α,β,γ為不同的平面,m,n為不同的直線,則m⊥β的一個充分條件是(  )
A.α∩γ=m,α⊥γ,β⊥γB.α⊥β,β⊥γ,m⊥αC.α⊥β,α∩β=n,m⊥nD.n⊥α,n⊥β,m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.假設(shè)你家訂了一份牛奶,送奶人在早上6:30~7:30之間隨機(jī)地把牛奶送到你家,而你在早上7:00~8:00之間隨機(jī)離家上學(xué),則你在離家前能收到牛奶的概率是(  )
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“a2=1”是“函數(shù)f(x)=ln(1+ax)-ln(1+x)為奇函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(2,-n),$\overrightarrow$=(Sn,n+1),n∈N*,其中Sn是數(shù)列{an}的前n項和,若$\overrightarrow{a}$⊥$\overrightarrow$,則數(shù)列{$\frac{{a}_{n}}{{a}_{n+1}{a}_{n+4}}$}的最大項的值為( 。
A.$\frac{1}{9}$B.$\frac{2}{3}$C.-$\frac{1}{9}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.經(jīng)過拋物線y2=2px焦點的弦的中點的軌跡是( 。
A.拋物線B.橢圓C.雙曲線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為推行“新課堂”教學(xué)法,某數(shù)學(xué)老師分別用原傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班進(jìn)行教學(xué)實驗,為了解教學(xué)效果,期中考試后,分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出的莖葉圖如圖.記成績不低于70分者為“成績優(yōu)良”.
(1)分別計算甲、乙兩班20個樣本中,數(shù)學(xué)分?jǐn)?shù)前十的平均分;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班乙班總計
成績優(yōu)良
成績不優(yōu)良
總計
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$.(n=a+b+c+d)
獨立性檢驗臨界表
P(K2≥0)0.100.050.0250.010
K02.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}前n項和為Sn,對任意p、q∈N*都有Sp+Sq=-p2-q2
(1)求{an}的通項公式;
(2)令Cn=$\frac{1}{{{a}_{n}a}_{n+1}}$,求{an}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓x2+y2+2x-6y+5=0,將直線y=2x+λ向上平移2個單位與之相切,則實數(shù)λ的值為( 。
A.-7或3B.-2或8C.-4或4D.0或6

查看答案和解析>>

同步練習(xí)冊答案