4.如果不等式組$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤1}\\{y≤1}\end{array}\right.$表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0)在函數(shù)y=2x+a的圖象上,那么實(shí)數(shù)a的取值范圍是[-3,0].

分析 畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,推出a的范圍即可.

解答 解:不等式組$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤1}\\{y≤1}\end{array}\right.$表示的可行域如圖:
平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0)在函數(shù)y=2x+a的圖象上,
可得a≤0,指數(shù)函數(shù)y=2x,向下平移a單位,經(jīng)過可行域的A時(shí),a可得最小值,由$\left\{\begin{array}{l}{y=1}\\{x-y=1}\end{array}\right.$,可得A(2,1),此時(shí)1=22+a,解得a=-3,
實(shí)數(shù)a的取值范圍是:[-3,0]
故答案為:[-3,0].

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知0<c<1,a>b>1,下列不等式成立的是( 。
A.ca>cbB.$\frac{a}{a-c}>\frac{b-c}$C.bac>abcD.logac>logbc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}滿足a3+a13-a8=2,則{an}的前15項(xiàng)和S15=(  )
A.60B.30C.15D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z=(a-4)+(a+2)i(a∈R),則“a=2”是“z為純虛數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且$PA=AD=DC=\frac{1}{2}$,AB=1,M是PB的中點(diǎn)  
(Ⅰ)證明:面PAD⊥面PCD;
(Ⅱ)求面AMC與面BMC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{2}{x}-{x^m}$,且$f(4)=-\frac{7}{2}$,
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)等差數(shù)列{an}中,S3=42,S6=57,則an=20-3n,當(dāng)Sn取最大值時(shí),n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在等比數(shù)列{an}中,已知${a_1}+{a_2}=-\frac{3}{2},{a_4}+{a_5}=12$,則數(shù)列是(  )
A.遞增數(shù)列B.遞減數(shù)列C.擺動(dòng)數(shù)列D.常數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,M和N分別為A1B1和B1C1的中點(diǎn),那么直線AM與CN所成角的余弦值是( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案