15.已知等差數(shù)列{an}滿足a3+a13-a8=2,則{an}的前15項和S15=(  )
A.60B.30C.15D.10

分析 由等差數(shù)列通項公式求出a1+7d=a8=2由此能求出{an}的前15項和S15

解答 解:∵等差數(shù)列{an}滿足a3+a13-a8=2,
∴a1+2d+a1+12d-(a1+7d)=2,
即a1+7d=a8=2
∴{an}的前15項和S15=$\frac{15}{2}({a}_{1}+{a}_{15})$=$\frac{15}{2}×2{a}_{8}$=15a8=30
故選:B

點評 本題考查等差數(shù)列的前15項和的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知梯形ABCD中,AB∥CD,∠B=$\frac{π}{2}$,DC=2AB=2BC=2$\sqrt{2}$,以直線AD為旋轉(zhuǎn)軸旋轉(zhuǎn)一周的都如圖所示的幾何體.
(1)求幾何體的表面積;
(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知F1,F(xiàn)2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,過點F1的直線l與E的左支交于P,Q兩點,若|PF1|=2|F1Q|,且F2Q⊥PQ,則E的離心率是( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{15}}{3}$D.$\frac{\sqrt{17}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若函數(shù)f(x)=lnx-ax+1,a∈R有兩個零點,則實數(shù)a的取值范圍是( 。
A.(-∞,1)B.(0,1)C.(-1,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四棱錐P-ABCD,側(cè)面PAD是邊長為4的正三角形,且與底面垂直,底面ABCD是∠ABC=60°的菱形,M為PC的中點.
(1)在棱PB上是否存在一點Q,使得QM∥面PAD?若存在,指出點Q的位置并證明;若不存在,請說明理由;
(2)求點D到平面PAM的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.《張邱建算經(jīng)》是公元5世紀中國古代內(nèi)容豐富的數(shù)學著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈,問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計)共織九匹三丈,問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布約有(  )
A.0.55尺B.0.53尺C.0.52尺D.0.5尺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)$f(x)=\frac{1}{{{{log}_2}({3-x})}}$的定義域為(-∞,2)∪(2,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如果不等式組$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤1}\\{y≤1}\end{array}\right.$表示的平面區(qū)域內(nèi)存在點P(x0,y0)在函數(shù)y=2x+a的圖象上,那么實數(shù)a的取值范圍是[-3,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.平面α截半徑為2的球O所得的截面圓的面積為π,則球心到O平面α的距離為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.1D.2

查看答案和解析>>

同步練習冊答案