5.平面α截半徑為2的球O所得的截面圓的面積為π,則球心到O平面α的距離為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.1D.2

分析 先求截面圓的半徑,然后求出球心到截面的距離.

解答 解:∵截面圓的面積為π,
∴截面圓的半徑是1,
∵球O半徑為2,
∴球心到截面的距離為$\sqrt{{R}^{2}-{r}^{2}}=\sqrt{3}$.
故選:A

點(diǎn)評(píng) 本題考查球的性質(zhì)、球的體積、點(diǎn)到平面的距離,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}滿足a3+a13-a8=2,則{an}的前15項(xiàng)和S15=(  )
A.60B.30C.15D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)等差數(shù)列{an}中,S3=42,S6=57,則an=20-3n,當(dāng)Sn取最大值時(shí),n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在等比數(shù)列{an}中,已知${a_1}+{a_2}=-\frac{3}{2},{a_4}+{a_5}=12$,則數(shù)列是( 。
A.遞增數(shù)列B.遞減數(shù)列C.擺動(dòng)數(shù)列D.常數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知三棱錐S-ABC的體積為$\frac{\sqrt{2}}{6}$,底面△ABC是邊長為1的正三角形,三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,棱SC是球O的直徑,則球O的表面積為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.等差數(shù)列{an}中,已知前15項(xiàng)的和S15=90,則a8等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線x-ay+a=0與直線2x+y+2=0平行,則實(shí)數(shù)a的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在棱長為1的正方體ABCD-A1B1C1D1中,M和N分別為A1B1和B1C1的中點(diǎn),那么直線AM與CN所成角的余弦值是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若a+b+c=3,且a、b、c∈R+,則$\frac{1}{a+b}+\frac{1}{c}$的最小值為$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案