19.已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β為非零實數(shù)),f(2011)=5,則f(2012)=(  )
A.1B.3C.5D.不能確定

分析 推導(dǎo)出f(2011)=-asinα-bcosβ+4=5,從而asinα+bcosβ=-1,由此能求出f(2012)的值.

解答 解:∵f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β為非零實數(shù)),
f(2011)=5,
∴f(2011)=asin(2011π+α)+bcos(2011π+β)+4
=-asinα-bcosβ+4=5,
∴asinα+bcosβ=-1,
f(2012)=asin(2012π+α)+bcos(2012π+β)+4
=asinα+bcosβ+4=-1+4=3.
故選:B.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對于回歸分析,下列說法錯誤的是( 。
A.在回歸分析中,變量間的關(guān)系若是非確定性關(guān)系,則因變量不能由自變量唯一確定
B.線性相關(guān)系數(shù)可以是正的或負(fù)的
C.回歸分析中,如果r2=1,說明x與y之間完全線性相關(guān)
D.樣本相關(guān)系數(shù)r∈(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法正確的是( 。
A.小明身高1.78 m,則他應(yīng)該是高個子的總體這一集合中的一個元素
B.所有大于0小于10的實數(shù)可以組成一個集合,該集合有9個元素
C.平面上到定直線的距離等于定長的所有點的集合是一條直線
D.任意改變一個集合中元素的順序,所得集合仍和原來的集合相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點M(2,tan 300°)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.利用微積分基本定理或定積分的幾何意義求下列各函數(shù)的定積分:
(1)$\int_0^1{({x^2}-x)dx}$(2)$\int_1^3{|{x-2}|dx}$(3)$\int_0^1{\sqrt{1-{x^2}}dx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過點(2,-3)且與直線x-2y+4=0的夾角為arctan$\frac{2}{3}$的直線l的方程是( 。
A.x+8y+22=0或7x-4y-26=0B.x+8y+22=0
C.x-8y+22=0或7x+4y-26=0D.7x-4y-26=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項和${S_n}={2^{n+1}}-2$,數(shù)列{bn}滿足bn=log2an,cn=an+bn
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.經(jīng)過圓x2-2x+y2=0的圓心且與直線x+2y=0平行的直線方程是(  )
A.x+2y-1=0B.x-2y-2=0C.x-2y+1=0D.x+2y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中,是真命題的是(  )
A.?x0∈R,ex0≤0
B.?x∈R,2x>x2
C.已知a,b為實數(shù),則a+b=0的充要條件是$\frac{a}$=-1
D.已知a,b為實數(shù),則ab>1是a>1且b>1 的必要不充分條件

查看答案和解析>>

同步練習(xí)冊答案