20.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}2x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,目標(biāo)函數(shù)z=x+2y,則z的取值范圍為$[{-\frac{3}{2},6}]$.

分析 由約束條件作出可行域,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)即可求得k值.

解答 解:由不等式組$\left\{\begin{array}{l}2x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,約束條件作出可行域如圖:

B($\frac{1}{2}$,-1),A(2,2),
由z=x+2y得:y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
顯然直線過B($\frac{1}{2}$,-1)時(shí),z最小,z的最小值是-$\frac{3}{2}$,
直線過A(2,2)時(shí),z最大,z的最大值是6,
故答案為:$[{-\frac{3}{2},6}]$.

點(diǎn)評(píng) 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知tan(α-β)=4,tan(α+β)=1,則tan2β=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已經(jīng)cos(2θ-3π)=$\frac{7}{25}$,且θ是第四象限角,
(1)求cosθ和sinθ的值;
(2)求$\frac{{cos(\frac{π}{2}-θ)}}{tanθ[cos(π+θ)-1]}$+$\frac{{sin(θ-\frac{3π}{2})}}{tan(π-θ)cos(-θ)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某四面體三視圖如圖所示,該四面體的體積為( 。
A.8B.10C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知偶函數(shù)f(x)是定義在{x∈R|x≠0}上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x).當(dāng)x<0時(shí),$f'(x)<\frac{f(x)}{x}$恒成立.設(shè)m>1,記$a=\frac{4mf(m+1)}{m+1}$,$b=2\sqrt{m}f(2\sqrt{m})$,$c=(m+1)f(\frac{4m}{m+1})$,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.a>b>cC.b<a<cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△abc中,三邊之比a:b:c=2:3:4,則$\frac{sinA-2sinB}{sinC}$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=ln(2x+1)-$\frac{3}{x}$在下列區(qū)間上單調(diào)遞增的是( 。
A.(-$\frac{1}{2}$,+∞)B.($\frac{-3+\sqrt{3}}{2}$,+∞)C.($\frac{-3+\sqrt{3}}{2}$,$\frac{1}{2}$)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:x>y>0,則-x<-y,q:若x>y,則x2>y2.在下列四個(gè)命題:p∧q,p∨q,p∧?q,(?p)∨q中,真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ 2x+y-2≤0\\ y+2≥0\end{array}\right.$,則目標(biāo)函數(shù)z=|x+3y|的最大值為( 。
A.4B.6C.8D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案